RAKETENFLUG

MITTEILUNGSBLATT DES RAKETENFLUGPLATZES BERLIN.

Januar 1932

Zur Einführung.

I Jahr Raketenflugplatz liegt hinter uns! Wertvolle Entwicklungsarbeit am Raketenmotor und an den ersten fliegenden Flïssigkeitsraketen, verbunden mit dem gelungenen Innenausban des Raketenilusplatzes kennzeichnen die Erfolge des Jahres 1931.

Nun gilt es die Außenorganisation aufzubauen! Diesem Ziele dient das nunmehr regelmäßig erscheinende Mitteilungsblatt ..Raketenflux". Es soll nicht nur die Verbindung mit unseren Mitgliedern aufrecht erhalten und vertiefen, es soll auch neue Mitglieder und Förderer dem Raketenfluggedanken gewinnen helfen.

Gleichzeitix hoffen wir aber auch unseren Mitgliedern die Mitarbeit zu erleichtern. Diese Mitarbeit kann nun durch Werbung von Abomenten für den „Raketenflug" in die Tat umgesetzt werden.

Die Schriftleitung.

Herausgeber: Raketenflugplatz Berlin des Vereins für Raumschiffatırt c. V. Verantwortlich: Dipl. ing. Rudolf Nebel, Berlin-Reinickendorf. Fernspr.: D9 Reinickendorf 4617. Postsch.-K.: Raketenflugplatz Nr. 61591.

Raketenflug.

Uralt ist der Tramm der Menschlacit, sich von der Erde loszulösen mod den Menschenilug zu verwirklichen. Unauihaltsam ging die Entwickluns ither die Heilslufthallons, das lenkbare Luftschiff zum Flugzeus und hat damit cinen vorlaufigen Abschlub xefunden. Denn alle diese Fallroenge sind ant das Vorhandensein von Luft gebmenden.

Das Flugzeng hat heute cine Höhe von 14000 merreicht, der Freihallon durch den Piccardschen Aufsties in die Stratosphaire - 16000 m . Nur der unbemamite Rexistrierballon hat es heute schon amf eine tö̈le vom 36 (an) ill gehracht.

Praktisch sind geringe Höhenunterschiede von mehreren Kilometern belanglos. zumal sie mit cinem erheblichen Aufwand an Geld beradilt werden müssen.

Tur Firreichung größcerer Höhcn kamu also mur eine völlige Abkehr von den hisherigen Antriebssystemen verhelfen. Wir brauchen einen Antrich. der von dent Vorhandensein der l.uft unabhängix ist.

Die cinzige Mäxlichkeit, anch inn lufteeren Rame \%u flicgen, liefert uns der sogenannte Räckstoß- oder Raketemantrieb.

Wir alle kemen seit Jahren die Pulverrakete aus der Feuerwerkerei. Untersucht man jedoch deren Antriel). so kommt man andem Ergebnis, daß eine wirklich große Kraft nur während eines Bruchteiles der ersten Sekunde frei wird: der lange Feuerschweif der Zierrakete wird also mur weyen des optischen (ienusses beihehalten, für den Antrieh hat er kaum Bedentumg. Alle Versuche die I.eistung derartiger Pulverraketen gil verbessern. kamen über eine gewisse (irenze nicht himaus: sie scheiterten an der Explosivität der Pulverrakete sowie besonders an der Unmöglichkeit, ihre Leistung irgendwic während des Bremens zu beeinflussen. Von der Verwendung der Pulverrakete \%urtilleristischen Zwecken, wie sie in der Mitte des vorixen Jahrhunderts versucht wourde, kam man daller bald wieder ab.

Finc nene große Bedentung komnte dic Rakete erst in dem AusenWick xewimnen, wo es gelang. branchhare Raketen für flüssige Treihstofie \%n konstruieren. Eine Explosionsgefahr, wie bei Pulverraketen. bestelat hier fast sar michit. und die Möslichkeit. den Durchfluß von Fliussigkeiten mit Hälmen oder Ventilen zu verändern, gestattet cin beliehiges Rexulieren des Antriels. Unter ciner Flüssigkeitsrakete ist also cinc rexulare Maschine zu verstelen, die Treibstofibehälter besitzt. die entlecrt und nachyefiillt werden können und die mit der äberlieferten Fencrwerksrakete nichts anderes als das Antriebsprinzip gemeinsam hat. Han miterteilt eine Fliissigkeitsrakete daher auch genan wie cine andere Alaschine in den ..Raketemmotor", in dem der Antrieb dureh Verbremung crocust wird. und in die zin der Treibstoifauflewahrung erforderlichen ..Tanks".

Es sei hier moch besonders daranf hingewiesen, daß der Raketenmotor inn (iexensat\% all allen anderen hisherigen Motoren natürlich keinerlei rotierende oder bewegte Teile hat: vermöge seiner Figenart ist er eben gerade in der lage, anf xatn\% direkten Wexe eine Antriehskraft \%n ergengen. Den Namen ..Motor" verdient er teot\%dem mit vollem Recht: Motor heibt ja michts anderes als ..Beweger". und der Raketenmotor ist ja die ursprimglichste Form cines Bewegers. die sich denken läßt.

Uns allen ist dic Wirkung des Rückstokes ans der Benbachtung bekamint. daß das Rohr eines (ieschitites im Augenblick des Abschusses auf der Lafette zuriickgleitet: es ist dieses anch dieselhe Wirknns. die beim Abfenern eines (iewehres den bekamten unangenchmen ..Riïckschlag* fülihar macht. Sie entsteht durch die Tatsache. dals der Expansionsdruck der Pulvergane mit der glecichen Kraft aui das (iewehr \%uriickdriickt, mit der er in der entexegengesetzten Richtung das dieschols heraustreibt. Ein Raketemmotor ist num michts anderes. als cine Kanonc, die imstande ist. in jeder sekunde viele Millionen wimzixster Kuseln abronschießen. die die (iasmoleküle darstellen. Jedes heransilicyemde Molekial

 konstant wirkende Kraft, der sogenamite ..Riexkstolb" der Rakete. Dieser Raickstoß waichst matairlich eimmal mit der Zahl der abyesehlenderten Moleküle, also der sekimellich allsströnmenden Masse, sodian! mit der Ahschlendermussesechwindigkeit.

Fïr den mäher Interessierten sei hier eine kurge Ableitung der Ausströmungstheoric der Rakete gexehen, die die rechnerische Beaichung \%wischen der eroielharen Endyeschwindiskeil cincrseits und dem Treilstoiĩverbranch sowic der Ausstrommusseschwindixkeit andererseits klarstellt: als F.ndxeselhwindigkeit in diesem Sime ist diejenige ideche (jechwindigkeit anfanfassen, die eme Rakete nach ilner Antriehnopriode inn lint- ind sidwerefreien Raunce crhalten hat.

Nach dem Newtonschen Bewesunysaxiom ist

$$
\mathrm{m} \cdot d v_{\mathrm{s}}=-\mathrm{c} \cdot \mathrm{dm}
$$

also

$$
\frac{d v_{x}}{|r|}=\frac{d m}{m}
$$

und

$$
\int \frac{d v_{x}}{|c|}=\int \frac{d m}{m}
$$

durch Intexration:

$$
v_{x}=|c| \cdot\left(\ln m_{0}-\ln m_{1}\right)=c \cdot \ln \frac{m_{n}}{m_{1}}
$$

Dic idecle Findreselowindigkeit ciner Rakete waichst also mit dem direkten Wert der Ansstrïnnmasugeschwindigkeit und mit dem natiirlichen Logarithmus des Verhailtnisses von Vollgewieht au Leergewicht der Rakete. Fs erhellt sich hierans wor allem die auBerordentliche Bedentung einer mäxlichst hohen Ansströmungsegeschwindigk eit, da ja eine Verminderuns voll e bei gleichent vx nur durch eine außerordentliche VergrößBerung des Massenverhältuisses m_{n} ! m_{1}, also auch des Treibstoffverbrauches erkauit werden kann.

Der Ausströmungsvorgang an einer Fliissigkeitsrakete ist ein thermodynamischer Effekt, der einige Aelmichkeit mit der bekannten Kaminwirkmig besit\%t. die für das .,Ziehen" eines Ofens ausschlaggebend ist. Diese Wirkinus beruht darin, daß ein erhitztes (ias auf einem langeren We:r die Möglichkeit der Abkühlung hat. wobei die ill ihm enthaltene W'ärmeenergic in Bewegungsenergie, d.h. in Strönung umgesetzt wird. Der ..Kammin" eines Raketenmotors ist die sogenannte Ausströmdüse, die Temperaturspanne ist freilich viel größer als bei einem normalen Ofen für Heizawecke, sie hetriagt bis 2000°. Die erzielbare Strömgeschwindigkeit liegt dather auch sehr hoch.

Bei ciner Verbremmung von Benzin in verflüssigtem Sauerstoff, wie sie in cinem modernen Raketenmotor erfolgt, werden Ausströmgeschwindigkeiten voll ca. 2200 Meter pro Stunde erzielt, bei Verwendung einer Treibstofizusammensteliung von Flüssigwasserstoff und Flïssigsauerstoff die wesen praktischer Schwierigkeiten \%ur Zeit allerdings noch nicht zur Anwendmis selangt, dürfen sogar 4000 Meter pro Sekunde noch leicht ertcichbar sein.

Eis ist daher micht verwomderlich, dals der mit cinem solchen Riickstoblimotor ergielbare Riackstoß im Verhailtuis zimm Treibstoffverbranch antserordentlich hoch erscheint; so kömte \%. B. mit cincon Raketenmotor von tur 1.5 kx (iewicht bei einem Treibstofferbranch von 500 Gramm pro Sekinnde ein datuernder Räckstoß von lof kg gemessen werden; in Pierdestarken ausgedrückt entspricht das einer indizierten Leistung von S(n) ISS! Dieser Motor könnte, mit Tanks für 45 Sekunden Arbeitsdauer belastet, bercits cinc Steighölie von etwa 15 Kilometern erreichen.

Alle diese Versuche haben natürlich einen außerordentlichen Aufwand an Arbeit benötigt mad werden dieses anch noch weiterhin in erhöltem Mabe unn. Zur Durchfiihrung dieser langwierigen Entwicklungsarbeiten sründete man bereits im Jalıe 1927 den Verein für Raumschiffahrt e. V., wer allmaihlich cine Mitgliedszahl von über finl erreicht hat. Mit den aus dic:en! Verein eingehenden Mitteln wurde \%nnächst dic Entwicklung eines cinitachen stationiaren Raketenmotors fiir Benzin und Flïssigsauerstoff in Ansrifi xenommen. Im Septeniber des Jahres 1930 gelang erstmalig. cinen Rückstoßs von 7.5 kg bei eincm sekundlichen Treibstoffverbrauch von 9 (iramm \% eraiclen und auch von behördlicher Seite bestätigt zu bekomunen.

Quittungen: Vercin für Weltraumfahrt. Rheydt/Rlıld. 500,—; Schendell, Stettin 5.--: Nit\%, Hannover 4.-: Bachmann, Berlin 10.--; Niemöller, Perlebery 8.-: L.ewy. Berlin 8.--: Gollnow, Stettin 7.-: Neubert, Berlin t.--: Schweiger, Berlin 10,-: Dr. med. Mütz, Frankfurt a. M. 11. ..: Arimm, Leipzig 2.-: Dr. Schulze, Soerabaja 8.-; W. Stöcker, Würzburg 10.-: Fr. Keßler, Berlin 10,--; O. v. Rothkirsch, Schottgau 10.--: W. Friedrich. Bielefeld 8.-: Dr. W. Botsch, Hamburg 3,-; F.. Löslein. Berlin 20,--: Schoierer. München 10,--: K. Janczikoeski, Berlin 10,-: A. Vierling, Mannheim 8,-; H. Ubert, Berlin 8,-; H. Geiser, Amberg 12.--: Briigel. Frankfurt 4,--.

WERBT ABONNENTEN FUR DEN "RAKETENFIUG"。

Bezussprcis iür das Mitteilungsblatt „Raketenflug* vierteljährlich RM 1,50.

