ЗАГАДКИ МАРСА

Из всех планет солнечной системы вряд ли какая-нибудь другая привлекала столько внимания, сколько Марс.

Про марсиан написано так много, что мы уже, как-то привыкли к мысли о существовании жизни на Марсе. И, право, будет даже жалко, если будущие межпланетные путешественники не встретят там разумных существ!

Но есть ли они на самом деле — вопрос, который предстоит решить, только совершив путешествие за пятьдесят пять миллионов километров. Так «близко» подходит Марс к Земле во время великих противостояний.

Тогда на него бывают направлены телескопы из разных уголков земного шара, и наблюдатели силятся рассмотреть мельчайшие подробности на лике загадочной планеты. И с новой силой вспыхивают горячие споры.

А спорить есть о чем. То, что мы знаем о Марсе, — благодарная пища для горячих дискуссий, остроумных гипотез, смелых теорий и уж, конечно, фантастических повестей и романов.

Бесспорно, Марс обладает атмосферой, хотя и очень разреженной. На вершинах самых высоких земных гор воздух более плотен, чем атмосфера на равнинной поверхности Марса. Ведь эти горы все же не поднимаются выше нижнего слоя воздушного океана Земли, а на Марсе, никуда не поднимаясь, мы бы чувствовали, что находимся в верхних слоях — в стратосфере. И все же, пусть крайне разреженная, сухая, прозрачная — в ней мало облаков, но есть газовая оболочка у этой планеты.

На Марсе наблюдается смена времен года. Зимой видны белые шапки у полюсов. Весной они почти исчезают. Несомненно, это снег или лед, то-есть вода, а воздух и вода — непременные условия жизни.

Климат на Марсе суровый, холоднее, чем на Земле. Но слишком низкой и слишком высокой температур, при которых уже невозможна жизнь, нет.

У южного полюса планеты зимой держится мороз в минус восемьдесят градусов, летом же температура достигает плюс десяти-пятнадцати градусов — начинают таять льды. На экваторе в полдень — «комнатная температура», двадцать выше нуля, а ночью холод доходит почти до пятидесяти градусов.

Обширные желтые пятна на планете — очевидно, пустыни. Зимой и летом они выглядят одинаково: пустыни — неподходящее место для жизни, там мало воды. Однако другие — коричневые — пятна летом меняют свою окраску. Пятна, появляющиеся летом, исчезающие зимой, — ведь это же растения, это жизнь! И тщательные исследования подтвердили: да, марсианская растительность не обман зрения, не плод досужей выдумки, а строго научная гипотеза.

Три четверти века назад сделано было интереснейшее открытие. На диске Марса впервые обнаружили сеть правильных линий, столь правильных, что, казалось, нельзя приписать их действию природы. Каналы, созданные разумными существами, беспримерные гидротехнические сооружения, орошающие бедную водой планету, — вот гипотеза, у которой оказались горячие сторонники и не менее горячие противники.

— Каналы — это линии жизни в бесплодных марсианских пустынях. Но то, что мы видим, — не сами каналы, слишком они узки, чтобы увидеть их даже в самый сильный телескоп. Они ползут весной от полярных шапок к экватору, на сотни и тысячи километров, опоясывая всю планету словно сетью сосудов. Вода утоляет жажду земли, и по берегам каналов, вслед за водой, идут от полюса к экватору растения. Ее-то, широкую полосу воспрянувшей к жизни мертвой пустыни, мы и видим. За этим победным шествием влаги скрыта разумная воля жителей древней планеты. Пятна на пересечении каналов, узлы водоносной системы — наверное, марсианские города.

Так рассуждали одни астрономы.

— Ваши каналы — просто оптическая иллюзия. Если хорошенько вглядеться, никаких каналов не увидишь: они распадаются на отдельные пятна и лишь сливаются для глаза в одну линию. О марсианах, об искусственном орошении не может быть и речи. Какими же должны, кстати, быть насосы, чтобы по равнинной поверхности Марса гнать через всю планету огромные массы воды! Вероятно, это просто какие-то «дефекты»: трещины, изломы, но уж во всяком случае марсиане здесь ни при чем.

Так говорили противники каналов.

Каков же исход спора? Есть каналы или нет их? Фотоснимки, в том числе сделанные за последние годы, подтвердили, что какие-то линии на Марсе, которые меняются в течение года, существуют. Однако что же такое они на самом деле, снимки оказать не могут. И хотя астрономы отказались от мысли с том, что каналы созданы марсианами, спор об их природе не решен до сих пор.

Когда ракеты отправятся к Марсу, снимки с близких расстояний, а впоследствии посещение планеты людьми дадут, наконец, ответ, что же представляют собой таинственные линии, испещрившие поверхность планеты. Не так уж долго осталось ждать. Возможно, что к столетию открытия каналов, через четверть века, эта загадка перестанет уже существовать

Атмосфера Марса тоже еще загадка для нас. Наблюдения показали, что кислород, хотя и в небольшом количестве,— есть там, но его очень мало, меньше процента по сравнению с Землей. Трудно, слишком трудно по одному лишь спектру отраженного планетой солнечного света судить о составе ее атмосферы. На Марсе нет болотного газа или аммиака, как на планетах-гигантах, но есть углекислый газ. И как ни пытались узнать, сколько же там «старых знакомых» — кислорода, азота, водяного пара, — к согласию прийти не могли. И лишь межпланетным путешественникам, которые возьмут пробу, скажем все же, воздуха Марса, удастся решить и эту загадку.

Оттуда привезут они и образцы марсианских растений.


На Марсе.

«Сейчас мы вправе утверждать: растительность на Марсе существует! — говорит основатель новой науки — астроботаники, выдающийся советский астроном Г. А. Тихов. — Марсианская флора во многом отличается от нашей. Она не отражает, а поглощает полностью «тепловые» инфракрасные лучи и в сильной степени — часть видимого спектра: цвета красный, оранжевый, желтый и зеленый. Поэтому растительность на Марсе имеет не зеленую, а синеголубую окраску. Марсианские растения приспособились к суровому климату планеты».

И когда-нибудь человек в скафандре наклонится над кустарником и травой, растущими на почве другого мира. В пустыне сорвет он цветы, которые ненадолго ярким ковром покрывают пески и глины марсианских равнин.

Ведь ученые заметили, что временами пустыни Марса «краснеют». — Чем это можно объяснить? — спрашивает Тихов. И отвечает: — Мы видим у нас на Земле, как пустыня цветет. Огромные пространства становятся огненно-красными от распустившихся маков, голубыми — от незабудок, фиолетовыми — от диких левкоев. Разве не может быть, что и марсианская пустыня на короткое время весной покрывается цветами?

Итак, на Марсе есть растения. Есть ли животные — пока еще сказать трудно. Астробиология, как и астроботаника, только зарождается. Если основываться лишь на твердо установленных фактах, давать волю воображению нельзя. Надо отметить, что среди ученых встречаются как сторонники органической жизни на Марсе, так и противники ее, которые оспаривают возможность существования растений в сухой и разреженной марсианской атмосфере.

Однако все же Марс — одна из тех планет в солнечной системе, природные условия на которой дали повод строить догадки о ней, как об обители жизни.

Вот одно из таких предположений. В глубоких пещерах, на дне старых морей обитают странные, на наш земной взгляд, животные. У них большие легкие, ибо воздух разрежен и в нем мало кислорода. У них сильно развиты органы слуха, ибо звуки плохо проходят в разреженной атмосфере. Подобно верблюду, они запасают в своем теле воду, ибо надо экономить драгоценную влагу в суровом сухом климате.

И вот другое, еще более фантастическое предположение На поверхности умирающей планеты жизнь замерла. Но она не погибла — ушла под землю. Возникли пещерные города с искусственной атмосферой, в них живут существа, для которых поверхность Марса стала легендарным адом, куда нет дороги. Возможно, что их осталось совсем немного, и они никогда не видели черного неба с немигающими звездами, не видели остатков некогда величественных сооружений и городов, теперь отданных во власть стихии.

Иногда спрашивают: почему же марсиане, если они существуют, не прилетали на Землю? Предположим, что разумная и притом высокоорганизованная жизнь на Марсе существует. Марсианами решена проблема межпланетных сообщений. Тогда они наверняка посетили бы нас — ведь суровые условия умирающей планеты заставили бы их искать нового места для поселений. Земля с ее атмосферой и избытком влаги, несомненно, должна была бы привлечь внимание марсиан. Правда, переселиться можно и в межпланетное пространство — на спутники Марса — и там воссоздать жизнь.

Выдвигались предположения, что спутники эти — искусственные небесные тела: уж очень странно двигаются маленькие марсианские луны. Но вряд ли это так.

Посещение марсиан не осталось бы незамеченным, тем более, что оно могло повторяться. Однако мы не нашли следов таких посещение. Отсюда вывод первый: Марс, вероятно, необитаем. Вывод второй: марсианская — предположительная, конечно, ниже земной. Ну, а каналы? Даже если они и были бы созданы искусственно, что отрицает современная астрономия, то и это не доказательство. Вспомним оросительные системы древних или римские акведуки. В древнем Китае или Хорезме были каналы, но не было межпланетных кораблей!

Нельзя смешивать данные научных наблюдений и полет воображения. Марс окончательно перестанет быть загадкой только тогда, когда вернется оттуда на Землю космический корабль.


Вероятный вид планеты Сатурн с одного из его спутников. Видны другие спутники.

УТРЕННЯЯ И ВЕЧЕРНЯЯ ЗВЕЗДА

Венера — сестра Земли, говорят астрономы. Действительно, Венера очень похожа на нашу планету: ее размеры, масса, сила тяжести на поверхности почти такие же, как у Земли.

А если добавить к этому, что у нее, как писал о своем открытии Ломоносов, еще и «знатная воздушная атмосфера, каковая обливается около нашего шара земного», то сходство будет полным.

Вот почему в поисках жизни на других планетах мы вслед за Марсом обращаем взоры к Венере — этой самой яркой звезде нашего небосвода, появляющейся перед восходом или после захода Солнца.

Вооруженные мощным телескопом, мы смотрим на блестящий белый шарик, находящийся «всего» в сорока миллионах километров от нас. Какие-то смутные пятна изредка появляются на закрытом плотной белой вуалью диске планеты. И это все, что удается заметить, хотя телескоп значительно «приблизил» Венеру.

Белая пелена ревниво скрывает тайну утренней звезды. Даже угнать точно, как быстро вращается Венера вокруг своей оси, как велики ее сутки, и то астрономы не смогли.

Но если глаз здесь бессилен, не помогут ли ему невидимые лучи? Помогли же они раскрыть загадку растений на Марсе.

Да, в невидимых лучах на снимке хорошо заметны пятна. Однако что это такое — сама ли поверхность, просматриваемая в прорыве между облаками, или что-то другое, — сказать определенно нельзя.

Попытались узнать, из чего состоит атмосфера Венеры, и разочаровались: кислорода и водяного пара там или нет вовсе, или же их количество таково, что наши приборы не могут обнаружить присутствие этих важных для жизни веществ. Зато углекислого газа очень много. Облака же, вероятно, пылевые. Они сильнее всего рассеивают желтые солнечные лучи, и не голубое, а желтое небо увидали бы мы на Венере. Своеобразная, непривычная картина!

В атмосфере из углекислоты, почти без кислорода и воды жизни быть не может. Но не надо спешить с выводами!

Только верхние слои газовой оболочки Венеры доступны астроному. Что творится внизу, мы не знаем, а только предполагаем.

— Как заманчиво научиться наблюдать поверхность Венеры сквозь ее облака! — говорит Г. А. Тихов.

Он считает возможным существование там растений, приспособившихся за долгое время к условиям, господствующим теперь на этой планете. Красно-желтые лучи сильнее отражаются от твердой поверхности Венеры. Не желто-оранжевые ли растения тому причина? Тихов думает, что это возможно.

Быть может, у поверхности Венеры есть и кислород и влага. Тогда углекислая атмосфера должна быть похожа на ту, какую имела Земля в молодости. Венера — младшая сестра Земли. И невольно перед глазами возникает картина мира, где расцветает жизнь, где начинается многовековой путь, ведущий к торжеству разума.

...Огни вулканов светятся кругом, огненные столбы взлетают к облакам, плотная завеса которых скрывает от взоров страну огнедышащих гор. Небо, тусклое от вулканической пыли. На склонах гор — огромные деревья, похожие на гигантские хвощи. Уродливые, как спруты, растения. Насекомые, как будто выползшие из дантова ада, чудовища всех мастей. Животные из царства великанов, созданные изощренной фантазией природы, причудливо соединяющей воедино такие формы, какие могут присниться только во сне.

Растения постепенно очистят воздух от углекислого газа, насытят его кислородом. Остынет поверхность — полагают, что сейчас на ней сто градусов, а может быть, и больше. Вымрут гигантские растения и животные, какие можно было увидеть на Земле только в далеком прошлом. Утихнут вулканы, прояснится атмосфера — и постаревшая Венера станет второй Землей, приютом жизни в ее высшей форме.

Так думали еще сравнительно недавно. Кстати, много углекислоты могло появиться именно из-за вулканов, как это было у нас. Да и сейчас от мысли о Венере, как о будущей колыбели жизни, не отказались окончательно.

Есть и другое предположение. Раз на ней нет кислорода, то нет и растений. Нет еще жизни, хотя она, несомненно, возникнет позднее. Солнце дает тепла и света Венере вдвое больше, чем нашей планете. Свет, тепло, атмосфера — благодаря этому со временем здесь возникнет жизнь. Земля перед появлением на ней первой живой клетки — вот каково другое мнение об этой планете, пока что скрытой от нас.

Если невидимые лучи не сумели пробраться за плотную завесу ее облаков, то, вероятно, это будет под силу радиоволнам. Вслед за Луной настанет очередь Венеры. Лучом радиолокатора мы сможем проникнуть сквозь атмосферу нашей соседки. Сумеют ли радиоволны рассказать о поверхности утренней звезды, как сделали они при локации Луны, — покажет будущее. На Луне нет воздуха, поэтому не было и препятствий для радиоволн. С трудом пробивается радиолуч через нашу атмосферу. Сможет ли он одолеть атмосферу Венеры? Но несомненно, что будущим межпланетным путешественникам локатор облегчит посадку на планету, скрытую сплошной облачной пеленой. Пробив ее, ракетный корабль опустится на Венеру, и люди, возможно, увидят океан, голую пустыню, дышащую жаром, или другую картину: планету, где жизнь уже возникла.

Как видим, межпланетные путешествия принесут нам решение интереснейших загадок, ответят на множество вопросов. Мы побываем в далеком прошлом нашей собственной планеты, если действительно Венера такова, какой ее представляют сейчас.

Природа неисчерпаема в своем бесконечном разнообразии. Кто знает, быть может, там встретятся и неизвестные еще формы жизни? Какое безграничное поле для исследований откроют ученым полеты на планеты!

До сих пор речь шла об атмосфере, о жизни на других мирах. А тайны их недр — разве в этом нет ничего загадочного?

Могут возразить: вся вселенная едина. Элементы менделеевской таблицы всюду — и на Земле, и на Солнце, и на звездах. Да, это так. О раскаленных небесных телах рассказывает луч света. Он может поведать нам и об атмосферах планет — холодных или нагретых, но не светящих собственным светом. О составе же самих планет этот разведчик вселенной бессилен рассказать, и только метеориты убеждают нас в том, что и в безбрежных космических просторах — те же, знакомые нам, вещества.

Правда, можно иногда заставить луч дать кое-что и для суждения о поверхности планеты. Нужно сравнить отраженный ею свет с тем, какой отражают земные породы. Так именно узнали мы о пустынях Марса, о застывшей вулканической лаве на Луне. Прозрачная марсианская атмосфера, отсутствие воздуха на Луне позволили это сделать, не мешая свету дойти до поверхности планет и отразиться от них. Другое дело Венера. Она упорно прячет свое лицо.

У Венеры — утренней и вечерней звезды — есть своя утренняя и вечерняя звезда. Правда, ее нельзя увидеть, но представим себе, что мы на Венере и в прорыве среди густых облаков перед нами открылось небо. Тогда на нем бросилось бы в глаза яркое светило, блистающее утром и вечером. Это Меркурий — самая близкая к Солнцу планета.

Меркурий — и самая горячая, и самая холодная, и самая быстрая из всех планет — членов солнечной семьи, у нее наибольшая скорость движения по орбите.

Нет или почти нет атмосферы на безжизненном шаре Меркурия, кружащемся вокруг Солнца там, где сильно греют солнечные лучи. Он напоминает Луну и по размерам и по характеру движения: всегда повернут одной стороной к Солнцу, как и Луна к Земле.

Солнце-звезда щедро одаряет теплом и светом эту маленькую планету. На освещенной части Меркурия, где вечно тянется день, стоит жара около четырехсот градусов. Вечный день, никогда не заходящее Солнце — привилегия одной лишь этой планеты в нашей системе. На другой же стороне — вечная ночь и холод межпланетного пространства. Как видим, на одной планете встречаются одновременно вечная жара и вечный холод, вечный день и вечная ночь.

Это, пожалуй, и все, что мы знаем о самой близкой к Солнцу планете. Добавим еще, что свет она отражает так же, как Луна, возможно, и поверхность ее напоминает лунную.

Впрочем, четыреста градусов тепла — не шутка! Некоторые металлы плавятся при такой температуре. И если предположить, что на поверхности Меркурия есть залежи металлов, то там могут оказаться озера жидкого олова или свинца.

Те, кто наделен богатым воображением, пошли еще дальше. В огненном пекле Меркурия возможна особая форма жизни! Живое не может, конечно, существовать там, где плавятся металлы. Живое вещество, как известно, состоит из соединений углерода, которые и славятся необычайным многообразием, способностью видоизменяться.

Жизнь — форма существования белковых тел, а основа белка в конце концов — углерод.

Но только один ли углерод такой замечательный элемент? Только ли он образует бесчисленное множество соединений? Химики говорят: нет. Ему подобен еще и кремний. Так нельзя ли представить себе жизнь на основе кремния?

«Быть может, не одни только углеродистые соединения способны давать вечноподвижные молекулы, подобные белковым?» — думал много лет назад народоволец Николай Морозов, и внезапно мысль, точно луч света, прорезала темноту. Он представил себе далекое прошлое, то время, когда Земля, как считали раньше, была еще жидкой и океан расплавленных пород покрывал едва застывшую внутри планету. Ему рисовались фантастические картины.

...Море жидкого кварца бьется в берега из тугоплавких горных пород. На берегу — живые существа. Их тела построены из аналогов белковых соединений, не боящихся жары, в их крови жидкий кварц. И когда осенью на поверхности кварцевой речки появляется кварцевый лед, этим существам холодно — замерзает их родная стихия. Они привыкли к другой температуре и видят другие лучи спектра. Ослепительно огненный мир — такой же обыкновенный для них, как и наш для наших глаз... Изменились условия — появились другие существа. Остатки прежней жизни — минералы — погребены в недрах земли.

Но это, конечно, только лишь плод остроумной фантазии, не больше.

Чтобы путешественники, прибывшие на Меркурий, не сгорели заживо, их скафандры должны быть не только герметическими и бронированными, но и особо огнестойкими.

Тогда, высадившись на самую горячую планету, люди смогут изучать ее поверхность. Они увидят, есть ли там действующие вулканы, ведь думают, что именно вулканические извержения выбрасывают облака пыли, иногда закрывающие местами лик Меркурия.

Луна и Меркурий — своеобразные небесные музеи. Меркурий иногда называют вторым изданием Луны. На том и на другом, возможно, побывает когда-нибудь человек. И тогда в будущих астрономических учебниках глава о Меркурии станет такой же полной и подробной, как глава о Луне после лунного перелета.

ГИГАНТЫ И КАРЛИКИ

Не сегодня, так завтра люди посетят иные миры, побывают и у самого Солнца и на окраинах солнечной системы, среди планет-гигантов — Юпитера, Сатурна, Урана, Нептуна.

Наш разговор на астрономические темы был бы не законченным без рассказа об этих членах планетной семьи.

У четырех гигантских планет есть несколько общих особенностей.

Их средняя плотность мала — несколько больше плотности воды, а у Сатурна даже меньше. Высказывалось предположение, что большая часть массы гигантской планеты (у Юпитера, например, она в триста раз больше, чем у Земли) сосредоточена в ее центре, в каменно-металлическом ядре. За ядром следует слой льда, толщина которого на Юпитере составляет двадцать пять тысяч километров.

Затем — атмосфера, которой не могло бы дышать ни одно живое существо. По всей вероятности, она состоит в основном из водорода, связавшего все свободные молекулы азота, углерода, кислорода. Вода — соединение кислорода с водородом — замерзла, образовался лед, покрывший толстой коркой ядро планет. Метан — соединение углерода с водородом — выдерживает господствующий там холод и остается газом. В метане и водороде плавают облака из капелек и кристаллов аммиака — соединения азота с водородом.

Другие ученые считают, что масса планет-гигантов в основном состоит из водорода и гелия, находящихся в нижних слоях под большим давлением.

Такими представляются планеты-гиганты. Их атмосфера тянется на несколько тысяч километров, так что на «дне» должно было бы господствовать чудовищное давление, в миллион раз большее, чем у поверхности Земли.


Вид со спутника на гигантскую планету.

Итак, нет жизни на планетах-гигантах с их метановой атмосферой. И все же она, возможно, существует. Так говорит астробиология, новая наука, созданная советскими учеными во главе с Г.А.Тиховым.

Но что может жить в ядовитых газах, без капли кислорода, в холоде, в царстве вечного льда, который не в силах растопить слабые лучи далекого Солнца?

Микроорганизмы, отвечает астробиология. Существуют микроорганизмы, которые могут переносить высокие и низкие температуры и давления, действие различных ядовитых веществ. Есть микроорганизмы, питающиеся минеральной пищей. Они обладают способностью поразительно быстро размножаться и независимы не только от других организмов, но и от тепла Солнца. «Беспредельна приспособляемость различных форм жизни», — подчеркивает Г.А.Тихов. Он приводит такой пример. Когда сравнили спектр метана, полученного из органических веществ, со спектрами атмосфер планет-гигантов, сходство оказалось полным. Этого не нашли, когда брали не органический, а синтетический аммиак. Возможно, метан и аммиак на Сатурне, Юпитере, Уране, Нептуне обязан своим происхождением деятельности бактерий — весьма своеобразного населения гигантских планет. Микроорганизмы, возможно, существуют также и на Венере и Марсе.

Температура на видимой поверхности гигантских планет очень низка: на Юпитере, например, минус сто тридцать восемь, а на Нептуне — двести градусов. Чем дальше от Солнца, тем холоднее и тем меньше аммиака в атмосфере — он вымораживается, а метана — больше.

Ядовитая атмосфера гигантов неспокойна. Она вечно бурлит, облака и пятна покрывают диск Юпитера, появляются и исчезают полосы на Сатурне. Красное пятно огромных размеров было замечено плавающим в атмосфере Юпитера. Есть пятна и облака других цветов.

Планеты-гиганты находятся от Солнца дальше, чем Марс. Но самая далекая планета — Плутон — планета-карлик. Она в триста раз менее массивна, чем Юпитер, и почти в сто раз, чем Сатурн.

«Плутон является, несомненно, бесплодным, холодным и темным небесным телом, близким к Земле по своим размерам и массе, но в высшей степени негостеприимным».

Так характеризует эту планету английский астроном Фред Уиппл. До Плутона трудно добраться, и все же гостей с Земли ему, вероятно, в далеком будущем принять придется.

Мне запомнилась картинка, которую я видел как-то в журнале. Неуклюжие чудовища в тяжелых скафандрах пробираются через хаотически нагроможденные скалы. Это межпланетные путешественники на Плутоне. Маленькой яркой звездочкой кажется отсюда Солнце, которое здесь, на самом краю солнечной системы, «светит, но не греет». Слабо освещен унылый горный пейзаж. На Плутоне — минус двести градусов и ниже. Только водород и гелий выдержали бы такой холод, не сгустившись в жидкость. Не встретятся ли там среди гор озера жидких газов? Трудно сказать, что можно найти на этом небесном леднике,который считается сейчас последней планетой солнечной системы. Он очень мал, и нельзя приписать ему наблюдаемые возмущения в движении Урана и Нептуна. Быть может, за Плутоном есть еще планета? Или он лишь одна из планет второго кольца астероидов, возможно существующего за орбитой Нептуна? И это надо проверить.


На астероиде.

То, что творится на самой близкой и самой далекой планетах — Меркурии и Плутоне, на планетах-гигантах, — во многом лишь область догадок. Мы мало знаем об этих членах семьи Солнца. Вооруженный телескопом глаз астронома, очутившегося за атмосферой, поможет раскрыть тайны и этих небесных миров, столь не похожих на наш собственный.

Что такое, например, большое красное пятно на Юпитере? Верно ли, что Нептун и его самый крупный и близкий спутник Тритон вращаются в разные стороны? Эти и другие вопросы о природе планет не могут не интересовать астрономов. Они очень важны для науки о происхождении небесных тел — космогонии.

Станет возможным ближе изучить не только планеты, напоминающие Землю, не только гигантских представителей планетной семьи, но и планеты-карлики — астероиды, которых много в солнечной системе. Число открытых малых планеток уже превысило полторы тысячи.

Пояс астероидов Циолковский назвал «чудесной страной», потому что там тяжесть ничтожна.

На Земле приходится бороться с властью тяготения, чтобы подняться ввысь. А на некоторых из астероидов пришлось бы, наоборот, заботиться о том, чтобы неосторожный прыжок не унес в мировое пространство.

Жюль Верн описал воображаемое путешествие вокруг Солнца на ядре кометы. Комета будто бы случайно встретилась с Землей и унесла с собою несколько человек в необычайное путешествие по небу. Как и полагается в романах, оно закончилось вполне благополучно при вторичном свидании небесной странницы с нашей планетой.

Можно было бы совершить подобный полет на астероиде, таком, например, как Эрос, Гермес или Аполлон, которые подходят к нам сравнительно близко. Эрос доставил бы путешественников поближе к Венере и Марсу, между орбитами которых проходит его путь, Гермес — к Меркурию и Марсу, Аполлон — к Венере. Обсерватория на астероиде, лишенном атмосферы и путешествующем между планетами, в разных областях солнечных владений, — такую возможность может предоставить астрономии ракета.

Кроме того, и само посещение крошечных планеток разве не было бы важным для науки? Сейчас ведь мы довольствуемся лишь изучением тех малых небесных тел, которые сами падают на Землю, — метеоритов. , Тщательно собирают осколки небесных камней и хранят их в музеях. Изучение метеоритов дает немало ценного и прежде всего доказательство единства материального мира, ответ на вопрос — из чего состоит вселенная.

Побывать на астероиде, среди астероидов, увидеть вблизи то, что не удается разглядеть даже в сильный телескоп, исследовать, как устроены эти самые маленькие спутники Солнца, проверить предположения об их строении, пролить свет на происхождение пояса планетоидов мечтал Циолковский.

Надо, правда, отметить, что путешествие в пояс астероидов сопряжено с большими опасностями. Именно там особенно велика вероятность встречи с блуждающими осколками. Но, возможно, на крупных астероидах удастся побывать космическим кораблям.

ОТКРЫТИЕ МИРА

В ясную ночь, когда небо усеяно миллионами звезд, мысль невольно устремляется туда, в бесконечные просторы вселенной. Кажется, что там царствует извечное спокойствие и так же, как сейчас, светили звезды миллионы лет назад, таким же манящим, как сейчас, было бездонное небо. Похожие узоры созвездий видели и первобытные люди, видим и мы сейчас. Звезды указывали путь караванам древних, везшим товары через пустыни, каравеллам, шедшим на поиски неведомых земель. И теперь звезды помогают человеку, побеждающему морскую и воздушную стихии. На эти маяки неба смотрели путешественники всех времен и народов. Ведь не зря же говорится — путеводная звезда!

Но за кажущимся спокойствием небесной бездны скрыта бурная жизнь — движение, которое никогда не начиналось и никогда не кончится, вечное изменение, становление, развитие.

А сколько звезд рассеяно во вселенной! Только видимых с помощью телескопа их около двух миллиардов.

Звезды — это островки раскаленной материи в межзвездном океане космической пыли и разреженного газа. Есть заезды, светящие в миллион раз слабее нашего Солнца, и почти в полмиллиона раз ярче его. Звезды «холодные», с температурой всего лишь две-три тысячи градусов, и пышущие стотысячеградусным жаром. Звезды-карлики, размером меньше Земли, в гиганты в тысячу раз больше солнечной системы. Звездное вещество более разреженное, чем воздух, и в десятки и сотни тысяч раз более плотное, чем вода. Звезды переменные, меняющие блеск, и удивительные «новые», внезапно вспыхивающие ярким светом, иногда так ярко, как миллионы слитых воедино солнц...

Удивительные чудеса неба открыла наука.

Успех астрономии — открытие мира в подлинном смысле слова, мира, имя которому — вселенная. Открыты скопления звезд, галактики, удаленные более чем на полмиллиона световых лет. Но и это не границы мира. Границы нет, как нет пределов человеческому познанию. Есть границы того, что мы уже узнали, и нет тому, что предстоит узнать.

Свои особые мерки для космоса, своя особая техника наблюдений у астронома, позволяющая открыть много чудесного и поведать людям о планетах и звездах.

Нельзя не восхищаться изумительными достижениями астрономической техники. Нет приборов более чувствительных, более точных, чем те, которыми располагают астрономы. Стало нарицательным выражение «астрономическая точность». Оптика, фотография, спектральный анализ, тончайшие методы исследований поставлены на службу астрономам. Им на помощь пришла теперь электроника, невиданно обостряющая наши чувства.

Самые большие современные телескопы улавливают свет в миллион раз слабее солнечного.

Не только свет, но и тепло излучают небесные светила. Прибор астронома заметит тепло спички на расстоянии в триста километров, тепло человеческого тела — на расстоянии в полкилометра.

На астрономических фотоснимках приборы улавливают ничтожное смещение звезды, зафиксированное пластинкой.

Точность измерений здесь очень высока, и это немудрено. Например, за малейшим смещением спектральных линий скрывается движение звезды со скоростью в десятки километров в секунду. Поэтому астроном, имеющий дело с огромными расстояниями в космосе, на фотопластинках охотится за микронами — тысячными долями миллиметра.

Все, что мы знаем о небесных телах, рассказано нам светом. Недаром его называют вестником далеких миров. Он рассказывает о Солнце — ближайшей к нам звезде, и звездах, удаленных на сотни миллионов световых лет — так далеко, что воображение отказывается представить дорогу к ним.

Основное оружие астронома — собиратель света, увеличитель изображений, глаз-великан — телескоп.

В гигантский телескоп — самый большой из построенных до сих пор — можно было бы увидеть трещину на Луне шириной меньше метра и марсианский канал шириной около ста метров!

Но тут мы встречаемся с самым опасным врагом астронома — атмосферой Земли. Из-за нее обсерватории взбираются на высокие горы. Из-за нее приходится ловить редкие часы, когда воздух спокоен, когда капризы погоды не мешают (вернее — меньше мешают) свету из космоса добраться до телескопа.

Невидимая, но ощутимая преграда стоит между сверхточным, сверхчувствительным астрономическим прибором и звездным небом. Она крадет яркость у звезд, искажает их свет и цвет. И так ничтожно мало приходит его от светил. С трудом урываются немногие часы, когда атмосфера спокойна. Все же и в самую тихую погоду изображения дрожат, размываются, потому что незаметные струйки воздуха, воздушные течения, преломляют свет. Насколько затрудняется работа астрофизика из-за капризов атмосферы!

Изучая Луну, приходится пользоваться увеличением всего в несколько сот раз, хотя современные телескопы могут дать гораздо больше. Где уж тут рассмотреть трещину меньше метра шириной! Где уж тут увидеть во всех подробностях марсианские каналы!

Даже тепло, идущее от нашего тела и нагревающее воздух, даже дыхание человека может помешать. Не зря думают о своеобразных скафандрах для астронома, не пропускающих тепла и воздуха.

Техника борется — и успешно — с несовершенством инструментов, которые служат астрономам.

Строятся телескопы с гигантским «зрачком» — диаметром в несколько метров. Добиваются того, чтобы стекла как можно меньше искажали изображение. Их изготовляют с величайшей тщательностью — контролер на оптическом заводе проверяет форму стеклянной поверхности с точностью до десятимиллионных долей миллиметра.

Советским ученым лауреатом Сталинской премии Д. Д. Максутовым изобретен новый менисковый телескоп с улучшенными оптическими свойствами и более компактный.

И все же атмосфера — враг наблюдателя — не побеждена! Она постоянно мешает астрономам.

Где же выход? Надо подняться за атмосферу — туда, где нет воздуха, а следовательно, воздушных течений и облаков, туманов и пыли, где нет погоды. Туда, где мир виден не со дна воздушного океана, а таким, какой он есть. Туда, где ничто не мешает использовать всю мощь астрономической техники.

Наука находит все новые и новые средства изучения окружающего мира. Новые средства — новые результаты. Яркий пример достижений науки — электронный микроскоп. Там, где оказался бессилен свет, поток электронов позволил преодолеть преграду, поставленную самой природой. Мы проникли далеко вглубь сверхмикроскопического, невидимого раньше мира.

Но так же, как электронный микроскоп не исключает применение микроскопа оптического, так и «внеземная» астрономия не исключает астрономии «земной». И не сомнение в достоверности полученных ныне данных, а стремление расширить границы знания является целью создания астрономических обсерваторий за атмосферой.

Астрономы сейчас мечтают о приборах, основанных на совершенно неизвестных нам принципах. Эти приборы помогут раскрыть неизведанное еще до осуществления космических полетов. Одно не мешает другому. Наоборот, ракета, подняв обсерваторию в межпланетное пространство, окажет неоценимую услугу технике астрономических исследований — услугу, не менее важную, чем вновь изобретенный, неведомый прибор.

Как бы точно ни был изготовлен гигантский телеокоп, тяжесть нескольких тонн стекла со временем его несколько испортит. Гигант если и не раздавит сам себя, то не сможет долго сохранить ту сверхвысокую точность формы, какую ему придало искусство оптика. Так, кстати, и случилось с самым большим в мире телескопом — американским пятиметровым рефлектором. Этого не произошло бы, если бы телескоп — любых размеров — находился на заатмосферной обсерватории, в мире, где тяжести нет.

Когда гигантские приборы появятся у астрономов на обсерватории вне Земли, — много дальше устремится взор человека во вселенную.

Трудно представить себе волнение астронома, который в просторах вселенной увидит в телескоп новое искусственное небесное тело, творение человеческих рук. Таких незабываемых минут будет много впереди: в поле зрения телескопа появится корабль, мчащийся к Луне; черная точка пронесется по лику Марса или Венеры, на спутнике нашей планеты — Луне — сигнальная вспышка возвестит о победе над тысячами километров пустоты, переставшими быть препятствием для полета к другим мирам. Как на хорошем снимке, исчезнут темные места, далекие детали станут ясными, прояснится неразличимая даль. За ничтожное — в мерках космоса — время человек шагнет вперед так далеко, как еще не шагал он до тех пор за всю свою жизнь. И, быть может, то, что ныне добыто трудом многих поколений астрономов, окажется лишь крупицей знаний в сравнении с успехами астрономии завтра, в которой ракета откроет, как говорил Циолковский, эпоху более пристального изучения неба.


ДОРОГА
К ЗВЁЗДАМ



ЗВЕЗДНЫЕ КОРАБЛИ

Еще не отправилась в космический рейс первая межпланетная ракета. Еще не состоялся первый полет человека на ракете за атмосферу, а люди уже мечтают о межзвездных перелетах, путешествиях в соседние миры солнц, отдаленные от нас чудовищными просторами космоса.

Но можно ли думать о полетах в миры других солнц, если мир нашего Солнца пока не завоеван нами? Быть может, это беспочвенная фантастика, выдумка писателя, плод воображения чудака-ученого?

Допустить возможность полета к звездам отказывались многие исследователи. И лишь те из них, кто имел смелость отрешиться от старого, по традиции установленного и как будто бы незыблемого, отвечали: да!

Немного времени прошло с тех пор, как знаменитый русский ученый напечатал первую в мире работу, ставшую теоретическим фундаментом межпланетных путешествий. В новой его статье в 1911 году уже появились строки о полете к ближайшей после Солнца звезде.

Сорок биллионов километров отделяет нас от ближайшей звезды — Проксимы Центавра. Кажется, никаких запасов топлива и никакой, даже самой длинной человеческой жизни не хватит для перелета к этой звезде. Но так кажется лишь на первый взгляд.

Только скоростью можно победить расстояние. Звездный корабль прежде всего должен развивать огромную, сверхвысокую космическую скорость, чтобы как можно быстрее пролететь триллионы километров своего пути.

Мы уже говорили о том, что в атомных ракетных двигателях скорость истечения, возможно, будет достигать двенадцати и более километров в секунду. Тогда и ракета сможет развить наибольшую скорость, более чем достаточную для перелетов в солнечной системе, даже с высадкой на самые отдаленные планеты. Но это совершенно недостаточно для полета к звездам.

Перелет до Проксимы Центавра занял бы десятки лет только в один конец. «Никто не странствовал бы по свету, если не надеялся бы когда-нибудь рассказать о том, что видел», — гласит старинное изречение. Отправляться в полет, не имея никакой надежды достигнуть цели и вернуться на Землю, — бессмысленно.

И французский инженер Эсно-Пельтри пессимистически заключает:

« ..Исследование других звездных систем, даже наиболее близких, вероятно, навсегда закрыто для человека».

Физика атомного ядра открывает перед техникой такие возможности, значение которых трудно сразу оценить.

Со скоростью двадцати тысяч километров в секунду двигаются частицы при атомном распаде. Правда, осколки взорванного атома несутся беспорядочно во все стороны.

Но ведь научились же мы управлять потоком электронов, скорость которого доходит до многих тысяч километров в секунду. В электронных приборах, таких, как электронно-лучевая трубка (вспомним, например, телевизор), мы собираем электроны в пучок, ускоряем их движение, уменьшаем или увеличиваем плотность потока, поворачиваем его. В нашей власти повелевать быстрыми частицами, соперничающими в скорости со светом.

Мы можем управлять потоком газовых частиц при взрыве. Обычно они разлетаются в стороны, но если в заряде взрывчатого вещества сделана выемка определенной формы, то струя газа вылетит в одну сторону, да при этом вдвое быстрее, чем обычно. Направленный взрыв позволяет перебрасывать грунт в точно назначенное место, помогая строить водохранилища и плотины, обнажать пласты руды под землей.

И если со временем в нашей власти окажется и управление взрывом атома и получение направленного потока частиц при атомном распаде, то, избавившись от посредника — жидкости, пары которой уносят с собой теплоту атомного распада, мы добились бы чрезвычайно высоких скоростей истечения, а с ними и гигантских скоростей самой ракеты.

Сто, сто пятьдесят, двести тысяч километров в секунду для такого звездного корабля были бы крейсерской скоростью на пути к звездам. Разгон до этой скорости таким образом, чтобы ускорение не было чрезмерным, затем — основная часть пути, когда корабль несется «вдогонку» за светом, и торможение, нужное, чтобы пристать к другому космическому острову. Три этапа. В одном миллионы, в другом триллионы и в третьем — снова миллионы километров полета.


Корабль в мире другой звезды


Межзвездная ракета.

Конечно, звездные корабли и межзвездные перелеты — чрезвычайно отдаленное будущее. Конструкцию ракеты, где движущей силой служит «направленный взрыв» атома, пока трудно ясно представить. Но это не значит, что ее вообще нельзя создать.

Если можно покорить электрон, если можно получить искусственно скорость, почти равную скорости света, а мы достигли этого в наших ускорителях заряженных частиц, то можно будет когда-нибудь и путешествовать с быстротой, за какой сейчас не угонится наше воображение.

— Позвольте, — скажет скептик, — но как же человек перенесет такую чудовищную скорость?

Ответ прост. Страшна не скорость сама по себе, которой мы не замечаем, а изменение ее, или, что то же, ускорение. Мы ведь все межпланетные и межзвездные путешественники. Вместе с Землей мы пролетаем каждую секунду тридцать километров вокруг Солнца. Наше Солнце вместе с окрестными звездами обращается вокруг центра Галактики, перемещаясь ежесекундно на двести сорок километров. Однако мы превосходно переносим эту невероятную скорость! Пассажиров межзвездной ракеты скорость в сто тысяч километров в секунду будет беспокоить столь же мало, сколь мало нас беспокоит движение нашего небесного корабля — Земли.

Однако межзвездное путешествие даже по сравнению с межпланетным будет необычным. Полет, длящийся не дни и месяцы, а долгие годы... Мне довелось как-то читать рукопись фантастического романа, о полете к созвездию Центавра, В первой части его все благополучно: группа людей летит в огромном космическом корабле. А вторую писатель назвал «Бунт на космическом». Нашлись среди экипажа те, кто не выдержал однообразия полета в небесной бездне, кто захотел привычного, земного, а не «межзвездного» уюта.

Вряд ли, впрочем, «небесные робинзоны» сойдут с ума от скуки. Полет к звездам не увеселительная прогулка, а экспедиция, равной которой — по смелости замысла, по величию цели — не было в истории человечества. Межзвездных путешественников не устрашит полет в неизведанное!

Необычное поджидает их на каждом шагу.

Физика учит, что при больших, сравнимых со световой, скоростях начинают действовать особые законы. Существует предел скорости, никакое тело не может двигаться быстрее, чем свет в пустоте С приближением к пределу, к тремстам тысячам километров в секунду, масса движущегося тела возрастает. На примере электрона практика подтверждает справедливость этого вывода, кажущегося непосвященному парадоксальным. Разогнав электрон до чудовищной скорости в электромагнитном поле, убедились, что он «отяжелел», увеличил свою массу в соответствии с теорией относительности, которая предсказала и объяснила эти «чудеса» движения, времени и пространства.



Приземление ракеты.



Космический рейс окончен.

На корабле вселенной, мчащемся со скоростью, близкой к световой, и на Земле время будет течь различно. По «земному» времени проходит, например, сто лет, по корабельному, «звездному», — десять

Перенестись, как на уэллсовской машине времени, на сто лет вперед — что, кажется, может быть невероятнее? Ракета отдаленного будущего открывает перспективы поистине фантастические! Замедлить бег времени, перепрыгнуть через столетие! Трудно поверить в реальность подобного. Но в этом нет никакого «чуда», как нет чуда и во всяком другом явлении, которым управляют пока еще непривычные нам законы.

На примере элементарной частицы — мезона — подтверждается справедливость парадокса времени. Продолжительность жизни мезона возрастает, если скорость его становится сравнимой со световой. Мы наблюдаем это явление лишь потому, что время для быстродвижушейся частицы и неподвижного наблюдателя течет различно.

Нужно учесть, что понятие времени относительно. Ведь речь идет о скоростях космических масштабов, о сотнях тысяч километров в секунду, о скоростях, близких к предельной скорости света. Не произойдет ничего невероятного со временем в солнечной системе, если путешественники не полетят со сверхвысокими скоростями. Необычайное начнется, когда мы выйдем на просторы космоса и помчимся на межзвездном корабле.

Относительность времени основана на твердо установленном факте — постоянстве скорости света в пустоте. Свет распространяется прямолинейно. Но путь его покажется не одним и тем же человеку, находящемуся на Земле, и человеку, двигающемуся с огромной скоростью вместе с источником света. Подобно этому летчик, бросивший бомбу с самолета, увидит ее падающей прямо вниз, а для наблюдателя с Земли она опишет кривую — параболу.

Если скорость постоянна, а пути различны, то и время пройдет неодинаковое. Для неподвижного наблюдателя оно будет большим, а для быстролетящего — меньшим. Вот почему путешественники на ракетном космическом корабле, настоящей машине времени, и перенесутся в будущее. Вернувшись из межзвездного перелета и проведя в нем несколько лет по своим часам, они застанут на Земле другой век по часам земным.

Путешествия к звездам сулят, как видим, необычайные возможности. И они не только в особенностях самого полета, а и в тех перспективах, которые откроются перед наукой, когда помчатся вдогонку за светом межзвездные корабли.

В ГЛУБИНЫ КОСМОСА

«Существуют бесчисленные солнца, бесчисленные земли... разумному и живому уму невозможно вообразить себе, чтобы все эти бесчисленные миры, которые столь же великолепны, как наш, или даже лучше его, были лишены обитателей, подобных нашим, или даже лучших».

Так писал Джордано Бруно. Три с половиной века прошло с тех пор, на костре инквизиции погиб тот, кто первым осмелился сказать вопреки церкви: мы не одиноки во вселенной!

Бруно погиб, но идеи его живы. Звезды — такие же солнца, как наше, только очень далекие от нас, говорил Бруно. Его спутники — земли, подчеркивал он, планеты. Современная наука доказала, что вокруг некоторых звезд обращаются планетоподобные спутники.

От ближайших к нам звезд — Альфы Центавра и Проксимы Центавра — свет идет четыре с лишним года. Триста тысяч километров в секунду, миллиард восемьдесят миллионов километров в час, в год... нет, слишком велики астрономические цифры расстояний во вселенной. Четыре световых года — это звучит короче и проще.

Если бы мы могли отправиться в путешествие в космос со скоростью света, то через четыре года наше Солнце превратилось бы для нас в маленькую звездочку. Увидели ли бы мы тогда семью его планет, эти темные тела, светящие лишь отраженным солнечным светом?

Да, они дадут нам знать о себе. Если бы засняли положение Солнца на небосводе, — не раз и не два, а много раз за много лет, — то заметили бы удивительную вещь: оно сбивается то в одну, то в другую сторону с пути, назначенного ему законом всемирного тяготения. Так повторялось бы каждые несколько лет. Это влияют на движение Солнца его спутники-планеты, в частности самая крупная из них — Юпитер.

О невидимых спутниках звезды, оказывается, можно узнать так же достоверно, как если бы мы слетали на Альфу Центавра и убедились в их существовании собственными глазами.

И, еще не совершая межзвездных перелетов, мы знаем, что планеты не одиноки во вселенной. Они имеются также у других звезд.

Почти полвека пулковские астрономы фотографировали звезду «61» в созвездии Лебедя. Оказалось, что за пять лет она смещается на угол в три сотых секунды дуги. На снимке это всего пять десятитысячных миллиметра! В этом, может быть, виноват невидимый спутник, который делает полный оборот вокруг своего солнца за пять лет. В самой удаленной точке своего пути он примерно в три раза дальше от звезды, чем наша Земля, уходит от Солнца. Масса его в двадцать раз больше, чем у Юпитера — самой крупной планеты солнечной системы. Возможно, что мы наблюдаем совместное возмущающее влияние нескольких планетоподобных спутников.

Вот что рассказали астрономам ничтожные отклонения крохотных точек на фотографиях звездного неба. Можно себе представить точность измерений на таких снимках!

Последние годы принесли новые открытия. Невидимый спутник оказался у Проксимы Центавра. Астрономы изучили движение двухсот сорока ближайших к нам звезд. Примерно шестьдесят из них имеют спутников. А между тем, говорит пулковский астроном профессор А. Дейч, «мы сейчас находимся лишь в самом начале многообещающего пути, и нет сомнений в том, что ближайшие годы принесут нам полное подтверждение того, что многие звезды имеют свои планеты».

Как разнообразны звезды, так разнообразны их планеты. Бесспорно, что среди них встретятся планеты, похожие на нашу родную Землю. О землях говорил Бруно три с половиной столетия назад. О землях говорят и современные астрономы.

Факты — упрямая вещь. И даже идеалист Джинс — английский астроном, противник множественности обитаемых миров — под давлением фактов в конце концов признает: «На многих планетах могут быть физические условия, не очень отличающиеся от наших земных и, таким образом, способные поддерживать жизнь, подобную нашей земной жизни. Вполне возможно, что жизнь гораздо более распространена во вселенной, чем мы думали».

Жизнь во вселённой... Значит, планеты других звездных систем могут быть обитаемы?

Труды советских ученых нанесли сокрушительный удар тем, кто пытался представить возникновение нашей планеты как счастливый случай, исключительный и неповторимый.

То, что произошло в одном уголке вселенной, могло или может произойти и в другом.

В беспредельных просторах вселенной, разделенные огромными пространствами, рождаются, живут, умирают миры и «материя в своем вечном круговороте движется согласно законам, которые на определенной ступени то тут, то там с необходимостью порождают в органических существах мыслящий дух».

Новейшие достижения науки укрепляют веру в справедливость этих замечательных слов Энгельса.

Жизнь не есть привилегия только нашей планеты. Лишь идеалисты, отрицающие материалистическую диалектику природы, не в состоянии этого понять. Только те, кто цепляется за выдуманные религией представления о божественном сотворении мира, боятся допустить возможность существования другой земли, кроме нашей, возможность другой жизни, кроме земной.

Трудно представить себе, каковы именно формы жизни в мирах далеких солнц. Несомненно одно: в ходе развития от низшего к высшему неизбежно возникает «высший цвет материи» — мыслящее существо. «...Раз дана органическая жизнь, то она должна развиться путем развития поколений до породы мыслящих существ». В этом утверждении Энгельса — ключ к материалистическому пониманию вопроса о жизни во вселенной.

Каким может быть облик мыслящих существ других планет, если они существуют? Одни ученые отвечают: всякое другое мыслящее существо должно обязательно походить на человека. Это наиболее удобная форма для «высшего цвета материи».

Нет, возражают другие. Почему обязательно человек? Место этой маленькой ветви класса млекопитающих, отряда обезьян на других планетах, в других условиях может занять другая группа животных. И, возможно, там возникли существа, не похожие на человека.

Не будем решать, кто из них прав. Для нас сейчас важно другое — вопрос о возможности полета к звездам.

В свое время произошла целая дискуссия на страницах журнала «Вестник знания».

Один читатель рассуждал так. Жители других миров не посещали Землю. Земля же не единственный культурный центр вселенной. На других планетах могут существовать более высокие культуры. И раз до сих пор из других миров к нам никто не прилетал, то и вообще межпланетные путешествия — неосуществимая мечта.

Но такая постановка вопроса неверна. В самом деле: если где-то во вселенной, кроме Земли, есть еще жизнь, и притом высокоразвитая, что же мешает нашим соседям посетить нас?

Если машины разумных существ иных миров не посетили Землю, то из этого еще не вытекает, что они не посетили другие планеты, говорил Циолковский. Да и в далеком прошлом, как и в далеком будущем, могло или может состояться посещение нашей планеты.

Космические скорости в десятки и сотни километров в секунду пока что недостижимы для современной техники. С трудом укладываются в воображении световые годы, разделяющие миры солнц.

Однако, если допустить, что у наших небесных соседей есть весьма совершенная техника, мощные источники энергии, надо допустить и возможность посещения ими Земли в прошлом, настоящем или будущем.

Разумеется, прилет корабля из глубины вселенной — явление чрезвычайное, исключительное.

Наше Солнце — обыкновенная, рядовая звезда, а вселенная бесконечна и в пространстве и во времени. Поэтому, говоря о возможности посещения Земли пришельцами из других звездных систем, нельзя забывать, что это может происходить крайне редко. Такое событие гораздо менее вероятно, чем, например, падение крупного метеорита

Велики еще трудности победы над расстоянием, которое даже самый быстрый гонец — свет — проходит годы. И пока мы можем только фантазировать о посещении нашей планеты жителями других звезд или о полете к звездам.

Звездоплаванием назвали полеты в мировое пространство. В слове этом — доля истины и одновременно явное преувеличение. Да, можно говорить о плавании между звездами, но только в окрестностях самой близкой звезды — Солнца. Дорога к другим звездам — дело очень отдаленного времени.

Уносясь мыслью далеко вперед, можно предвидеть, что будущее принесет подтверждение — неопровержимое, наглядное, зримое — идеи множественности обитаемых миров среди звезд.

Это подтверждение дадут межзвездные корабли, путешествующие к другим солнцам, к другим планетным семьям. И тогда звездоплавание обретет свой подлинный смысл.

...Уже много времени прошло с тех пор, как корабль покинул родную планету и взял курс на далекую звезду

Обычные понятия «день» и «ночь» давно потеряли для путешествен ников свой смысл. «Ночь» — когда закрыты иллюминаторы или выключено освещение. «День» — все остальное время. К этому привыкаешь, и кажется, что всегда так было, словно долгие годы прошли в маленьком мире, ограниченном стенками корабля.

Звездное небо, непривычный узор звезд... Корабль постепенно набрал чудовищную скорость, чтобы перенестись к звезде, до которой луч света путешествует годы.

Несколько суток — и корабль покинул пределы солнечной системы. Солнце превратилось в яркую звездочку, а корабль понесся с быстротою, уже сравнимой со скоростью света. И тогда путешественники увидели звезды — не мерцающие серебряные точки, какие видны с Земли, и не разноцветные гвоздики, усеявшие небосвод, какими они кажутся за атмосферой. Звезды, к которым летел навстречу и от которых удалялся небесный корабль, меняли цвет, переливаясь разными огнями, как сказочный фейерверк Их сияние изменяло окраску, подобно тому как меняется тон гудка несущегося навстречу нам с большой скоростью паровоза.

Проходят недели, месяцы...

В телескоп уже виден хоровод светлых точек вокруг маленькой звездочки. И вот уже это не далекая звездочка, а яркий диск, подобный нашему Солнцу, на свет которого больно смотреть.

Впереди еще миллионы километров, но пора начинать торможение. Включены двигатели. Как хвостатая комета, несется в небесных просторах межзвездный корабль. Острова вселенной, семья другой звезды, другого солнца уже близко.

Перед путешественниками открываются все новые чудеса. У планеты, к которой сейчас приближается корабль, оказалась атмосфера, она вся в белой пелене облаков. Есть, повидимому, атмосфера и у другой «встречной» планеты — она покрыта голубоватой дымкой, как вуалью скрывающей ее поверхность.

Трудно разглялегь, что за этой вуалью — по ней плывут облака. Вот в просвете мелькнуло что-то ослепительно яркое. Что это? Море, отражающее лучи Солнца? Или, быть может, снежные вершины гор?

...Корабль облетел планету, постепенно, круг за кругом, все более снижаясь. Она видна теперь совсем хорошо — огромная тарелка, прикрытая облаками.

Приборы показывают, что в атмосфере планеты есть кислород. Путешественники заметили блестки водной глади. Кислород и вода? Значит, возможна даже жизнь на этой неведомой планете!

С огромной скоростью корабль врезался в атмосферу планеты. Обшивка корабля начала нагреваться. Даже охлаждающие установки не в состоянии были бороться с нагревом, и в пассажирской кабине стало нестерпимо жарко. Пришлось пустить тормозные двигатели на полную мощность, чтобы несколько уменьшить скорость.

Уже многое можно было увидеть на поверхности планеты простым глазом. Влоль края большого материка — длинная горная цепь. Дальше — огромные водные просторы, льды и снова вода...

Вглядываясь в рельефную карту, расстилающуюся внизу, звездоплаватели увидели за горным хребтом желтое пятно. Пустыня! Песок! Это отличная посадочная площадка.

Корабль повернул к поверхности планеты и начал быстро снижаться. Полет подходил к концу. Снова душно стало в кабине. Сквозь стенки слышен был гул урагана — корабль, как метеор, прорезал воздух чужой планеты.

Желтое пятно приближалось. Пора! Глухие взрывы, потом еще и еще... Это работает двигатель, судорожно захлебываясь короткими очередями, опаляя жарким дыханием «землю» под кораблем.

Корабль боролся с притяжением планеты. С ревом вырывались огненные струи из двигателей. Последний прыжок вверх — и гигантский корабль начал медленно опускаться, как будто на огненном столбе. Столб все меньше, и все ближе место посадки. Еще мгновение — и спуск окончен. Корабль лежит на поверхности планеты.

Непривычно странной кажется тишина. Открыты снова шторки иллюминаторов, и пейзаж иного мира, на небе которого восходят разноцветные светила, предстает перед глазами путешественников.

Неутомимая жажда знаний привела их сюда, под чужое небо, на чужую планету. С волнением смотрят они на чужие небеса, на мир чужого Солнца.

Позади остались триллионы километров пути на звездном корабле, соперничающем в скорости со светом. Где-то в бездонных небесных просторах осталась звезда, имя которой Солнце, планета, имя которой Земля...

Открывается люк.

Межзвездные путешественники вступают в другой мир...

НЕВОЗМОЖНОЕ СЕГОДНЯ СТАНЕТ ВОЗМОЖНЫМ ЗАВТРА

Короткое слово «невозможно» таит в себе страшную силу. Оно кладет конец надежде, произносит беспощадный приговор.

Но не кажется ли вам, что все движение науки и техники вперед — наступление, борьба с невозможным? Невозможное отступает перед могуществом разума, и каждое завоевание человеческого ума и рук человеческих есть удар по неприступной, казалось, крепости.

Мысль о возможности узнать, из чего состоят небесные тела, далекие солнца, считалась когда-то сумасбродной. «Человек никогда не узнает состава небесных тел», — говорил французский философ Огюст Конт. И что же? Не побывав на Солнце и звездах, мы научились понимать язык света, который они посылают. Свет рассказал, что мир един, что вселенная состоит из одних и тех же элементов. — и это так же точно, как если бы кусочек звезды попал в нашу земную лабораторию. Мало того: свет повествует также о движении звезд, об их температуре. Он помог различить на расстоянии миллионов световых лет двойные звезды, звезды-сестры. Многое сообщил световой луч и о ближайших, но все же очень далеких от нас небесных телах — планетах. Невозможное отступило.

Изобретение микроскопа положило начало увлекательнейшему путешествию в микромир. Все более мелкие его обитатели становились доступными глазу. Внутреннее строение металла и жизнь мельчайших бактерий, целый огромный мир в капельке воды открыл микроскоп, ставший помощником инженера и врача, химика и биолога. Однако путешествию этому довольно скоро пришел конец. Сама природа света положила предел дальнейшему продвижению вглубь микромира: световые волны не способны обнаружить предметы, размеры которых меньше половины длины волны. Две тысячи раз — предельное увеличение оптического микроскопа. Больше невозможно!

И что же? Электроника сделала невозможное. Электронный микроскоп увеличивает в сто тысяч раз. С его помощью мы наблюдаем мельчайшие фильтрующиеся вирусы, изучаем тончайшее строение вещества и наблюдаем даже отдельные крупные молекулы.


Невозможное сегодня станет возможным завтра.

Измерять ничтожные доли секунды — тысячные, миллионные, миллиардные, изучать процессы, длящиеся сверхмгновения, — разве это раньше представлялось возможным? Такое время неподвластно нашим чувствам. «Мгновение» в обычном смысле слова длится десятые доли секунды. Но сколько происходит в природе и технике явлений, которые не измеришь этим кратчайшим отрезком времени! Путешествия радиоволн, разряд молнии, выстрел, взрыв, распад атома протекают неуловимо быстро. Нельзя как будто поймать столь малое, как нельзя представить бесконечно малую величину, только математическую условность.

Невозможное стало возможным. Управляемый нами поток электронов — быстрейших, легчайших частичек — смог сыграть роль стрелки чудесных часов, когда его заставили «гулять» по шкале-циферблату за тысячную или миллионную, а в самые последние годы— и за миллиардную доли секунды.

И этих наудачу взятых примеров, пожалуй, достаточно, чтобы показать относительность в науке и технике грозного слова «невозможно».

Дикой, безрассудной еще сравнительно недавно считали мысль о межпланетных полетах. Теперь противников идеи космических путешествий так же мало, как сторонников обветшавшей системы Птолемея.

Доказана возможность силами техники ближайшего будущего осуществить полет на Луну, на планеты. Исследование мировых пространств реактивными приборами — теперь не химера, не просто увлекательная тема для фантастических романов, а реальная техническая задача.

Невозможное отступило опять. Значит ли это, что все стало легко доступным, простым, ясным, что победа придет сама?

Нет, понадобятся еще годы для решения многочисленных проблем, связанных с межпланетными путешествиями.

— Успешное построение реактивного прибора представляет громадные трудности и требует многолетней предварительной работы и теоретических и практических исследований, — говорил Циолковский.

Советская наука достаточно сильна, чтобы наряду с задачами сегодняшнего дня заниматься и большими перспективными проблемами с расчетом на будущее, и даже на очень отдаленное будущее.

Президент Академии наук СССР академик А. Н. Несмеянов недавно подчеркнул, что наука достигла такого состояния, когда реальна посылка ракеты на Луну, создание искусственного спутника Земли

В нашей стране была открыта дорога к звездам. И нашей стране должна принадлежать честь первого полета во вселенную.

Циолковский был уверен в том, что только у нас, в Советском Союзе, можно осуществить его идеи — окончательно завоевать стратосферу и выбраться, наконец, за ее пределы.

Могущество советской техники известно всему миру. В руках советских людей она творит чудеса. И мы, строящие грандиозные гидростанции, переделывающие природу целой страны, осваивающие огромные площади новых нетронутых земель, безусловно, справимся и с постройкой межпланетной ракеты.

Будущим математикам, механикам, астрономам, физикам, химикам, врачам, конструкторам, тем, кого увлекает грандиозная проблема межпланетных путешествий, предстоит большая работа. Им надо много знать, многому учиться.

Нужно начинать «предварительную работу, теоретические и практические исследования», о которых говорил Циолковский.

Трудно приподнять завесу будущего и представить, каких успехов добьются техника и наука завтра, послезавтра, столетия спустя. Прогресс бесконечен. Нужна большая смелость, чтобы заглянуть в даль веков.

Трудно нарисовать достижения человечества в будущем.

Но несомненно, что это будущее прекрасно. Оно наступит так же неотвратимо, как наступает день после ночи.

Свободное человечество получит невиданную власть над природой. Энергия Солнца, которой овладеет техника, неизмеримо расширит возможности человека, даст ему бездну могущества.

За это страстно боролся Константин Эдуардович Циолковский, твердо веривший, что советским людям предстоит воплотить в жизнь одно из самых смелых дерзаний человечества и сделать возможным то, что еще невозможно сегодня.


ЛИТЕРАТУРА

Для читателей, желающих ознакомиться более подробно с затронутыми в книге вопросами, приводится рекомендуемая литература. Звездочками отмечены научные труды, рассчитанные на подготовленного читателя.

Труды К. Э. Циолковского, Ф. А. Цандера. Ю. В. Кондратюка и литература о них

*Циолковский К. Э., Труды по ракетной технике. Под редакцией М. К. Тихонравова. М., Оборонгиз, 1947, 368 стр.

*Цандер Ф. А., Проблема полета при помощи ракетных аппаратов. Под редакцией М. К. Тихонравова. М., Оборонгиз, 1947, 240 стр.

*Кондратюк Ю. В., Завоевание межпланетных пространств. Под редакцией П. И. Иванова. М., Оборонгиз, 1947, 84 стр.

Чернышев Н. Г., Проблема межпланетных сообщений в работах К. Э. Циолковского и других отечественных ученых. М., изд-во «Знание», 1953. 32 стр.

Ляпунов Б. В., Проблема межпланетных путешествий в трудах отечественных ученых. М., и.зд-во «Правда», 1951, 24 стр.

Космодемьянский А. А., Знаменитый деятель науки К. Э. Циолковский. М., Военнздат, 1954, 136 стр.

Общие вопросы теории межпланетных путешествий

Перельман Я. И., Межпланетные путешествия. М.-Л., ОНТИ, 1935, 272 стр., изд. 10-е. (Несмотря на то, что часть материала о достижениях ракетной техники устарела, книга представляет интерес. В ней в общедоступной форме излагаются физико-технические основы межпланетных путешествий.)

*Оберт Г., Пути осуществления космических полетов. М., Оборонгиз, 1948, 232 стр.

*Эно-Пельтри Р., Космические полеты. М., Оборонгиз, 1950, 148 стр.

*Штернфельд А., Введение в космонавтику. М.-Л., ОНТИ, 1937, 320 стр.

Штернфельд А., Полет в мировое пространство. М.-Л., Гостехиздат, 1949, 140 стр.

Ракетная техника, ее история и применение. Атомная энергия

Гильзин К. А., Ракетные двигатели. М.. Оборонгиз, 1950. 84 стр.

*Саттон Д., Ракетные двигатели. М., Издательство иностранной литературы, 1952, 328 стр.

Ильяшенко С. М.. Реактивная техника. М., Изд-во ДОСАРМ, 1951, 76 стр.

Ляпунов Б. В., Рассказы о ракетах. Под редакцией М. К. Тихонравова. М.-Л., Гссэнергоиздат, 1950, 136 стр

*Коой И. и Ютенбогарт И., Динамика ракет. М., Оборонгиз, 1950, 328 стр.

Лешковцев В. А., Атомная энергия. М.-Л., Гостехиздат, 1954. 72 стр.

Астрономия, геофизика

Воронцов-Вельяминов Б. А., Очерки о вселенной. М., Гостехнздат, 1951, 524 стр.

*Барабашев Н. П., Исследование физических условий на Луне и планетах. Харьков, изд-во Харьковского Государственного университета, 1952, 272 стр.

Тихов Г. А., Астробиология. Изд-во «Молодая гвардия» 1953, 68 стр.

3игель Ф., Загадка Марса. М.-Л., Детгиз. 1952, 96 стр.

«Атмосфера Земли». Сборник. М., Госкультпросветиздат, 1953, 424 стр.

Шаронов В. В. Марс. М.-Л.. Изд-во АН СССР. 1947, 180 стр.

Шаронов В. В., Есть ли жизнь на других планетах? М., Воениздат, 1952, 46 стр

Чечик П. О., Радиотехника и электроника в астрономии. М.-Л., Госэнергоиздат 1953, 104 стр.

Научно-фантастическая литература

Циолковский К. Э., Грезы о Земле и небе. М.-Л., ГОПТИ, 1938, 120 стр.

Беляев А., Прыжок в ничто. С предисловием К. Э. Циолковского. Изд-во «Молодая гвардия». 1936, 304 стр

Беляев А. Звезда КЭЦ М -Л., Детиздат, 1940, 184 стр.

Захарченко В., Путешествие в завтра. М.-Л., Детгиз, 1953 (стр. 162-186 — о внеземной станции).



назад

к началу