вернёмся на старт?
Статьи в иностранных журналах, газетах (февраль - декабрь 2025 г.)
- Эд Реджис. Смелая попытка отправиться (Ed Regis, Boldly attempting to go) (на англ.) «New Scientist», том 265, №3528 (1 февраля), 2025 г., стр. 21 в pdf - 1,88 кб
"Исследуя "Звездный путь", мою новую книгу о реалиях межзвездных путешествий, я часто удивлялся причудливым, сверхсовременным проектам космических аппаратов, которые ученые предлагали в авторитетных научных журналах. Наиболее известным из них является проект "Орион" (1957-1965), основная идея которого заключалась в том, чтобы привести в движение межзвездный космический корабль, взорвав за ним серию термоядерных бомб, которые обеспечат ему серию мощных толчков в космическом пространстве. Спустя долгое время после завершения проекта Фримен Дайсон, работавший над ним, сказал: "Мы действительно были немного не в себе, думая, что все это сработает". Аминь. На полном серьезе предлагалось множество других безумных проектов космических кораблей. В 1984 году Энтони Мартин (Anthony Martin) заявил в журнале Британского межпланетного общества (British Interplanetary Society), что "грузоподъемность самых крупных предложенных транспортных средств составляет всего около 50 миллионов человек (что эквивалентно населению Британских островов)". Только? В том же году физик Роберт Л. Компания Forward опубликовала проект управляемого лазером межзвездного светового паруса диаметром 1000 километров. Это, по его признанию, имело серьезный недостаток: "Если мы хотим обеспечить постоянное ускорение, мощность лазера должна быть увеличена с 43 000 ТВт в начале до 75 000 ТВт или более в конце фазы ускорения". "ТВТ" означало тераватты - на тот момент 1 тераватт - это общее количество электроэнергии, производимой на Земле за один год. По любым стандартам, 75 000 тераватт - это очень много. (...) Но даже более скромные конструкции, вероятно, оказываются неосуществимыми на практике. Одной из самых популярных идей в настоящее время является "мировой корабль", в котором поколения пассажиров рождаются и умирают на борту космического корабля в течение сотен лет путешествий. (...) Космический корабль со 100 000 человек на борту сам по себе является эпической, даже героической концепцией дизайна. Для его строительства потребовались бы ресурсы в невиданных на Земле масштабах. Авторы говорят, что основным камнем преткновения в таком проекте является его стабильная работа с течением времени: "Мировой корабль
надежность, вероятно, будет главной проблемой технико-экономического обоснования из-за большого количества деталей и длительной продолжительности полета". Исследователи оценивают частоту отказов в трех компонентах в секунду. Для поддержания этого уровня потребуются большие возможности автономного ремонта. Поскольку оборудование также может выйти из строя, оно должно быть самовосстанавливающимся. Но загвоздка в том, что такая самовосстанавливающаяся система сама по себе будет подвержена поломкам систем, которые разработаны для предотвращения или устранения. Итак, в конце концов, мировой корабль становится саморазрушающимся артефактом, который фактически обрекает на гибель корабль и его пассажиров. Сюрприз! Даже если межзвездные путешествия станут для нас недоступны в неопределенном будущем, факт остается фактом: у нас есть возможность колонизировать остальную часть нашей солнечной системы. Возможные пункты назначения включают Луну и Марс, а также такие спутники, как Европа и Энцелад. Другим вариантом было бы создание космических колоний на околоземной орбите или среди астероидов. (...) самое лучшее в этом варианте то, что, хотя он и сложен на практике, он не является абсурдным".
[Название "Смелая попытка отправиться" является отсылкой к знаменитой фразе "смело идти туда, где еще не ступала нога человека" из американского телесериала "Звездный путь". Каждая серия начиналась словами капитана Кирка: "Космос: последний рубеж. Это путешествия звездолета "Энтерпрайз". Его пятилетняя миссия: исследовать незнакомые новые миры. Искать новую жизнь и новые цивилизации. Смело отправляться туда, где еще не ступала нога человека!"]
- Тим Бодди. Сгорающий (Tim Boddy, Burning up) (на англ.) «New Scientist», том 265, №3528 (1 февраля), 2025 г., стр. 24-25 в pdf - 2,68 Мб
Подпись к фотографии: "Эти жуткие снимки огненного неба показывают момент, когда ракета Starship компании SpaceX драматически вернулась на Землю в разрушенном виде в прошлом месяце. (...) Седьмой испытательный полет Starship стартовал с площадки SpaceX в Бока-Чика, штат Техас, 16 января [2025 года], но испытал на себе "быструю внеплановую разборку", как компания творчески называет взрывы после пожара в кормовой части корабля. (...) Хотя существует множество видеозаписей, демонстрирующих взрыв ракеты, снимки [Джеймса] Темпла - единственные известные снимки, сделанные профессиональным фотографом. Он говорит, что это было "сюрреалистично" - быть тем, кто их делал. (...) он был "в нужном месте в нужное время, чтобы запечатлеть эти снимки", - говорит он."
- Трудности с миссией Isro, но план «Б» в работе (Hitch for Isro mission, but Plan B in the works) (на англ.) «Hindustan Times», New Delhi edition, 03.02.2025 в pdf - 188 кб
"100-й запуск спутника Индийской организацией космических исследований (Isro) столкнулся с технической неполадкой через четыре дня после старта с космодрома Шрихарикота, штат Андхра-Прадеш. В заявлении Isro, опубликованном в воскресенье [02.02.2025], говорится, что, хотя солнечные панели спутника были успешно установлены с номинальной выработкой электроэнергии и была установлена связь с наземной станцией, важнейший орбитальный маневр не был выполнен. "Операции по подъему на орбиту для позиционирования спутника в заданном орбитальном интервале не удалось выполнить, поскольку клапаны подачи окислителя для запуска двигателей для подъема на орбиту не открылись", - говорится в заявлении. (...) "Альтернативной стратегией полета для использования спутника для навигации по эллиптической орбите разрабатывается."Навигационный спутник NVS-02 был запущен на борту ракеты-носителя GSLV F15 [Геостационарная спутниковая система выведения на орбиту] 29 января [2025 года] в 6:23 утра, что ознаменовало исторический 100-й запуск Isro со своего объекта в Шрихарикоте. (...) Запуск был особенно значимым, поскольку он был первым при новом председателе Isro В. Нараянане, который вступил в должность 16 января 2025 года. (...) Спутник является частью индийской навигационной системы NAVIC, предназначенной для наземной, воздушной и морской навигации и точного земледелия."
- Саджила Сасиндран. Смотрите: это Бурдж-Халифа ночью из космоса! (Sajila Saseendran, Look: It’s Burj Khalifa at night from space!) (на англ.) «Gulf News», 04.02.2025 в pdf - 482 кб
"Астронавт НАСА Дональд Рой Петтит поделился захватывающей фотографией Бурдж-Халифы, самого высокого здания в мире в Дубае, с Международной космической станции (МКС). Петтит опубликовал ночное изображение Бурдж-Халифы, отчетливо выделяющейся на фоне освещенного городского пейзажа Дубая. (...) Бурдж-Халифа выделяется на общем фоне, его фасад излучает сияющий серебристый оттенок, что, очевидно, обусловлено уникальным дизайном здания, что делает его одной из достопримечательностей, видимых из космоса".
- Янь Дунцзе. Нейтринные детекторы, развернутые в Южно-Китайском море (Yan Dongjie, Neutrino detectors deployed in South China Sea) (на англ.) «China Daily», 07.02.2025 в pdf - 326 кб
"Китайские ученые развернули несколько прототипов детекторов для обнаружения нейтрино в Южно-Китайском море", - сообщил Институт физики высоких энергий (IHEP) при Академии наук Китая в среду [05.02.2025]. Детекторы были успешно установлены в специально отведенном месте на глубине 1600 метров ниже уровня моря, что стало ключевым техническим шагом в разработке прототипа системы в рамках программы Sea Star, финансируемой Китайским океанологическим университетом. В рамках проекта будет проведена техническая оценка подводного нейтринного телескопа высоких энергий (HUNT) - крупномасштабного научного прибора, предложенного IHEP, предполагаемый объем которого составит около 30 кубических километров. Прототипы детекторов являются частью подготовительного этапа проекта HUNT, цель которого - охватить 600 квадратных километров океана. Ожидается, что проект позволит обнаружить точечные источники нейтрино в течение двух лет и идентифицировать десятки астрофизических источников нейтрино в течение десятилетия, что позволит Китаю занять лидирующие позиции в области нейтринной астрономии, сказал Чэнь Минцзюнь, исследователь из IHEP. (...) "Наблюдение за нейтрино высоких энергий, которые могут преодолевать огромные расстояния, не подвергаясь воздействию магнитных полей или вещества, является эффективным способом раскрыть процессы и источники, стоящие за этими высокоэнергетическими частицами, которые остаются загадкой уже более столетия", - добавил он. Однако эта же особенность делает обнаружение нейтрино высоких энергий чрезвычайно сложной задачей. Текущие международные эксперименты, проводимые на протяжении десятилетий, ограничены технологиями обнаружения и финансовыми инвестициями. Эффективный объем их детекторов остается от 1 до 8 кубических километров, что может оказаться недостаточным для идентификации источников нейтрино высокой энергии, особенно галактических источников нейтрино, сказал Чен."
- Запуск «Чандраяна-4» запланирован на 2027 год; Центр - 2024 YR4, астероид, который должен пересечь траекторию Земли (Chandrayaan-4 set to launch in 2027: Centre -- 2024 YR4: The asteroid that’s set to cross Earth’s path) (на англ.) «Hindustan Times», New Delhi edition, 07.02.2025 в pdf - 630 кб
"Миссия "Чандраян-4", целью которой является возвращение лунных образцов, которые не повреждены и не загрязнены, будет запущена в 2027 году, - заявил в четверг министр науки и технологий Союза Джитендра Сингх [06.02.2025]. (...) "Чандраян-4" будет включать в себя, по крайней мере, два отдельных запуска тяжелой LVM-3, ракеты, которая будет нести пять различных компонентов миссии, которые будут собраны на орбите. "Цель миссии "Чандраян-4" - собрать образцы с поверхности Луны и доставить их обратно на Землю", - сказал Сингх в интервью PTI Videos. Во время выступления в Акашвани в октябре прошлого года [2024] бывший председатель Isro [Индийской организации космических исследований] С. Соманатх сказал, что "Чандраян-4", скорее всего, будет запущен в 2028 году. В сентябре прошлого года [2024] Кабинет министров Союза одобрил две научные космические миссии - "Чандраян-4" и орбитальную миссию Венеры (VOM) для изучения различных аспектов планеты, включая ее поверхность и атмосферу. На веб-сайте Индийской организации космических исследований указано, что запуск VOM запланирован на март 2028 года. (...) Перед полетами "Чандраян-4" и "Гаганьяан" в этом году [2025] состоится первая миссия проекта "Гаганьяан" с участием женщины-робота-астронавта, или Vyommitra, без экипажа. В прошлом году Сингх сказал, что устройство Vyommitra astronaut предназначено для моделирования функций человека в космической среде и взаимодействия с системой жизнеобеспечения". - Вторая статья, инфографика: "Астрономы отслеживают астероид, который впервые был замечен в Чили сразу после Рождества 2024 года. Текущие расчеты показывают небольшую, но не совсем незначительную вероятность столкновения с Землей 22 декабря 2032 года - 1,8%. Вот что нам известно. Космические агентства по всему миру следят за астероидом до апреля 2025 года, когда он станет слишком слабым для наблюдения. Затем наступает трехлетний период ожидания до июня 2028 года, когда он снова станет видимым. Такая схема наблюдения и ожидания будет продолжаться до критического 2032 года. [Риск в цифрах] Текущие расчеты показывают, что вероятность столкновения с Землей составляет 1,8% (...) Хотя это означает, что вероятность того, что он полностью минует нас, составляет 98,2%, вероятность этого достаточно высока, чтобы астрономы внимательно следили за происходящим. (...) [Астероид] диаметром 40-90 метров (...) Возможная зона столкновения: коридор Восточная часть Тихого океана - Южная Азия. [Историческое сравнение] (...) если 2024 YR4 попадёт в Землю - хотя он подчеркнул, что это остается маловероятным, последствия были бы сопоставимы с Тунгусским метеоритом, глыба 40 метров в диаметре, "уничтожила 2000 квадратных километров леса и послала сейсмические волны по всему району, которые ощущались за сотни километров". [Что теперь?] Глобальные космические агентства активировали протоколы планетарной защиты. Самые мощные телескопы в мире отслеживают его траекторию, в то время как ученые постоянно уточняют свои расчеты. Если риск возрастет, космические агентства готовы рекомендовать дальнейшие действия Организации Объединенных Наций."
- Гигантская дыра открывается на поверхности Солнца (Giant hole opens up on sun's surface) (на англ.) «New Scientist», том 265, №3529 (8 февраля), 2025 г., стр. 7 в pdf - 1,86 Мб
Подпись к фотографии: "Огромная корональная дыра - большая темная область в центре этого снимка - появилась на поверхности Солнца 29 января [2025 года]. Она имеет диаметр более 800 000 километров и была обнаружена космическим аппаратом НАСА Solar Dynamics Observatory. Корональные дыры - это области более холодной плазмы, которые имеют структуру магнитного поля, позволяющую большему количеству заряженных частиц улетучиваться в виде солнечного ветра."
- Джеймс Диннин. Астероид имеет низкую вероятность столкновения с Землей в 2032 году (James Dinneen, Asteroid has low chance of hitting Earth in 2032) (на англ.) «New Scientist», том 265, №3529 (8 февраля), 2025 г., стр. 9 в pdf - 2,40 Мб
"Вероятность столкновения астероида размером до 100 метров с Землей 22 декабря 2032 года составляет 1 к 83. Этого риска достаточно, чтобы впервые были задействованы процедуры реагирования глобальной планетарной обороны. (...) Астероид, получивший название 2024 YR4, был впервые обнаружен 27 декабря 2024 года автоматизированным телескопом в Чили, который сканирует астероиды. В настоящее время он находится на первом месте в списке рисков столкновения с Землей, составленном ЕКА и НАСА, с вероятностью столкновения с Землей в 1,3% примерно через семь лет. Этот риск столкновения в сочетании с размерами астероида дает ему оценку 3 из 10 баллов по Туринской шкале - инструменту, используемому для классификации потенциального ущерба от столкновения с кометами и астероидами. Это означает, что он квалифицируется как "близкое столкновение", которое может привести к "локальным разрушениям". (...) Сбор данных измерений астероида с помощью более мощных телескопов может дать более точное представление о риске его столкновения с Землей. Это может свести риск к нулю (...) связанная с ООН группа под названием International Asteroid Warning Network работает над изучением траектории астероида. Другой международный консорциум под названием Консультативная группа по планированию космических полетов был предупрежден об астероиде и может приступить к разработке предложений о том, как защититься от столкновения, например, отклонить астероид с помощью космического аппарата, если в этом когда-либо возникнет необходимость."
- Надя Дрейк. Пункт назначения: Фобос (Nadia Drake, Destination: Phobos) (на англ.) «New Scientist», том 265, №3529 (8 февраля), 2025 г., стр. 34-37 в pdf - 4,82 Мб
"Фобос и его меньший соседний спутник Деймос, открытые в 1877 году, являются двумя самыми загадочными мирами в Солнечной системе. (...) Спутники Марса могут быть захваченными астероидами или образоваться из того же диска первичного планетарного вещества, что и Марс. Возможно, они были созданы в результате огненного катаклизма, подобного столкновению, в результате которого образовалась Луна. Или, возможно, история их происхождения совсем иная. (...) Теперь есть надежда, что мы сможем, наконец, разгадать эту загадку, благодаря новой миссии на Фобос, которая находится в разработке. (...) К 1950-м годам астрономы подсчитали, что Фобос обращается вокруг Марса каждые 7,5 часов, а Деймос, внешний спутник, совершает оборот каждые 30 часов. (...) Фобос, более крупный из двух спутников, имеет размер всего 27 километров в самом широком месте. (...) Фобос настолько странный, что один советский ученый [Иосиф Шкловский] даже всерьез задумался, не может ли это быть инопланетной постройкой. (...) Сегодня мы с уверенностью знаем, что Фобос не является инопланетной космической станцией. (...) Но все же верно, что луна падает на Марс и что в течение следующих 100 миллионов лет она либо врежется в планету, либо будет разорвана на части, образовав кольцо, которое будет осыпаться дождем на Марс в течение тысячелетий. (...) За десятилетия наблюдений мы узнали немного больше, чем следующее: Фобос очень странный объект (как и Деймос). Оно восходит на западе и заходит на востоке дважды в марсианский день. Он намного темнее, чем персиковая поверхность Марса - на самом деле, это одно из наименее отражающих небесных тел в Солнечной системе. Его рябую поверхность пересекают необычные, необъяснимые борозды, а также гигантский кратер Стикни. Фобос и Деймос не только внешне не похожи на Марс, но и отличаются по составу поверхности. (...) Этот [спектральный анализ] показал, что поверхности спутников очень напоминают темный астероид, богатый водой и органическими соединениями, который находится вблизи внешнего края главного пояса астероидов, между орбитами Марса и Юпитера. В результате многие ученые считают, что спутники являются захваченными объектами (...) Большая проблема заключается в том, что спутники вращаются вокруг Марса совершенно неправильно, чтобы эти истории о захвате имели смысл. Их траектории аккуратны - почти круговые вокруг экватора Марса, - но мы ожидаем увидеть такое выравнивание, когда спутники сформируются из того же облака вещества, что и их планета. Это также может произойти, когда они объединяются в кольце обломков, образовавшемся в результате гигантского столкновения (...) Захваченные объекты, наоборот, имеют тенденцию двигаться по неправильным орбитам (...) Другими словами, крайне маловероятно, что Марс захватил и Фобос, и Деймос и направил их по их нынешним маршрутам. Но если они образовались на Марсе из тех же компонентов, что и планета, как они могут так сильно отличаться от самой планеты? (...) Единственное, что могло бы помочь нам разгадать тайну, - это отправить специальную миссию на Фобос. (...) В 2026 году Японское агентство аэрокосмических исследований (JAXA) планирует запустить зонд Marsian Moons eXploration (MMX), чтобы исследовать Фобос вблизи и, если все пойдет хорошо, собрать образцы с его поверхности и вернуть их на Землю. Научные приборы миссии составят подробные 3D-карты Фобоса и состав его поверхности, а также соберут огромное количество данных. Но настоящим сокровищем станет то, что MMX доставит на Землю. Всего за 2,5 часа аппарат соберет все, что сможет, прежде чем взлететь и покинуть систему Марса в 2030 году, вернувшись на Землю в 2031 году. (...) Ожидается, что образцы окончательно раскроют тайну происхождения Фобоса (...) Если Фобос когда-то был астероидом - или даже более похожим на комету телом, которое родилось еще дальше от Солнца, - это добавило бы к нашей истории о том, как развивалась обитаемость во внутренней части Солнечной системы. (...) С другой стороны, если окажется, что Фобос выглядит как отрезанный кусок Марса, то мы узнаем кое-что еще об истории самого Марса. (...) Мы также могли бы использовать образцы MMX, чтобы выяснить, когда произошло столкновение, в результате которого образовался Фобос, если оно действительно произошло (...) За все время наших исследований Марса мы никогда не делали одной вещи - не собирали и не возвращали домой кусочек Красной планеты. (...) независимо от происхождения Фобоса, он накапливал пыль со своей планеты-хозяина, возможно, в течение миллиардов лет, вместе с частицами Марса, которые были выброшены в космос в результате столкновений. (...) Если нам действительно повезет, эти образцы могут помочь нам узнать, был ли Марс пригоден для жизни - или даже обитаем. (...) Даже помимо этого, MMX может стать ступенькой к созданию присутствия человека на орбите Марса, возможно, с Фобосом в качестве аванпоста. Несмотря на то, что основное внимание уделяется отправке людей на Марс, было много призывов отправиться на Фобос. Поскольку он меньше, на него гораздо легче приземляться и взлетать, и он послужил бы идеальным местом для управления роботами на поверхности Марса".
- Херби Шмидт. Не астероид, а Тесла Илона Маска (Herbie Schmidt, Kein Asteroid, sondern Elon Musks Tesla) (на немецком) «Neue Zürcher Zeitung», 08.02.2025 в pdf - 942 кб
Наверное, люди в астрономических кругах говорят, что это неловко получилось. В начале января 2025 года Гарвард-Смитсоновский центр астрофизики в Кембридже, штат Массачусетс, объявил об открытии необычного астероида. Он был обнаружен турецким астрономом-любителем и находился на расстоянии около 240 000 километров от Земли. Это означало, что он приблизился к Земле ближе, чем Луна, и был достаточно важен, чтобы продолжать следить за ним на предмет столкновения с Землей. Но менее чем через семнадцать часов ученые из Гарварда вычеркнули новое открытие из списка - 2018 CN41 больше не существовал. Точнее, его никогда не существовало, потому что странный объект был не астероидом, а автомобилем. Объект двигался по той же орбите, что и Tesla Roadster генерального директора Tesla Илона Маска, который его космическая компания SpaceX катапультировала в космос 6 февраля 2018 года с помощью ракеты Falcon Heavy. На борту кабриолета сидел манекен по имени Стармен, оснащенный скафандром и аудиосистемой. Аппарат был установлен на ступени ракеты и служил испытательной нагрузкой для первого полета Falcon Heavy. Двухместный кабриолет был изготовлен британским производителем спортивных автомобилей Lotus в 2010 году без двигателя, выхлопной системы или бака и был оснащен примерно 6800 аккумуляторами для ноутбуков и электродвигателем на первом заводе Tesla в Менло-Парке, Калифорния. Автомобиль мощностью 215 киловатт и весом всего 1200 килограммов быстро привлек внимание своим огромным энергетическим потенциалом и волшебным образом привлек пионеров электронной мобильности. Как указано на веб-сайте whereisroadster.com, который был создан для летающего объекта, это электромобиль с самым большим пробегом, но без вращающихся колес. Спустя семь лет после своего запуска в космос Стармен удаляется от Земли на своем Tesla Roadster со скоростью 6433 километра в час, или 1,8 километра в секунду. Автомобиль превысил заводскую гарантию, которая была рассчитана на 36 000 миль (57 600 километров), при этом общий пробег в настоящее время составляет около 5,6 миллиарда километров. Это означает, что автомобиль не сможет воспользоваться бесплатным ремонтом аккумулятора, который больше не работает. Акустические развлечения, запрограммированные в автомобиле для Starman, также не использовались в течение многих лет. - Ошибка астрономов с тех пор вызвала споры о растущей проблеме. Космос - это нерегулируемая область, удаленная от Земли. Астрономы предупреждают, что растущее число незарегистрированных объектов может помешать усилиям по защите Земли от потенциально опасных астероидов. Ошибки в космосе случались и раньше, например, в 2007 году. В то время Гарвард-Смитсоновскому центру пришлось исключить астероид под названием 2007 VN84 из списка. Это оказался космический зонд ЕКА "Розетта", который набрал скорость в гравитационном поле Земли на пути к комете Чурюмова-Герасименко. Американское астрономическое общество (AAS) теперь призывает всех участников космических программ централизованно регистрировать свою деятельность. Реестр должен быть общедоступным. В проекте Clearspace-1 Европейского космического агентства (ЕКА) используется другой подход. Она поручила немецкой компании OHB и швейцарской компании Clearspace провести космическую миссию по испытанию метода удаления космического мусора. В ходе первого испытания космический буксир с четырьмя захватами доставит выведенный из эксплуатации спутник обратно в атмосферу Земли. Полет запланирован на 2028 год. Неизвестно, будут ли когда-нибудь космонавт и его Tesla захвачены манипулятором. SpaceX никак не прокомментировала инцидент с 2018 CN41.
- Чжао Лэй. Ракета-носитель Long March 8A успешно дебютировала (Zhao Lei, Long March 8A carrier rocket makes successful debut) (на англ.) «China Daily», 12.02.2025 в pdf - 351 кб
"Китай провел дебютный полет своей ракеты-носителя Long March 8A во вторник днем [11.02.2025], доставив в космос группу спутников, - сообщает Китайская корпорация аэрокосмической науки и техники. Конгломерат космической отрасли сообщил в пресс—релизе, что ракета стартовала в 17:30 с космодрома Вэньчан, прибрежного космодрома в провинции Хайнань, и вскоре вывела полезную нагрузку - вторую группу низкоорбитальных спутников в государственной интернет-сети Китая — на заданную орбиту. (...) После завершения миссии Long March 8A стал 18-м действующим членом семейства Long March, являющегося основой космических программ Китая. Спроектированный и построенный Китайской академией технологий ракет-носителей (China Academy of Launch Vehicle Technology), дочерней компанией Китайской корпорации аэрокосмической науки и техники, Long March 8A имеет высоту 50,5 метров, стартовую массу 371 метрическую тонну и тягу при старте около 480 тонн. Эта модель в основном предназначена для вывода спутников на солнечно-синхронные орбиты и способна выводить полезную нагрузку весом до 7 тонн на типичную солнечно-синхронную орбиту высотой 700 километров. (...) В настоящее время в Китае строится несколько спутниковых интернет-сетей, но об этом умалчивается."
- Саджила Сасиндран. Эмиратский астронавт, побывает на Луне "в течение десятилетия" (Sajila Saseendran, An Emirati astronaut on Moon ‘within a decade’) (на англ.) «Gulf News», 13.02.2025 в pdf - 718 кб
"ОАЭ наращивают свои космические амбиции, планируя отправить своего первого астронавта на поверхность Луны в течение следующих 10 лет, а также имеют долгосрочное видение исследования Марса человеком. Салем Хумаид Аль Марри, генеральный директор Космического центра имени Мохаммада Бен Рашида (MBRSC), озвучил ожидаемые сроки высадки на Луну во время вчерашнего заседания Всемирного саммита правительств (WGS) в Дубае [12.02.2025]. "Честно говоря, что движет мной — и, я полагаю, многими в MBRSC — это желание увидеть эмиратца на поверхности Луны в течение следующих 10 лет", - сказал Аль Марри во время сессии. В рамках своей растущей роли в глобальных космических инициативах ОАЭ предоставляют систему шлюзования для космической станции Nasa Lunar Gateway, вращающейся вокруг Луны. В свою очередь, ОАЭ обеспечат доступ эмиратских астронавтов на орбитальную станцию и к потенциальным полетам на поверхность Луны. Как страна, подписавшая Соглашение об Артемиде, ОАЭ активно участвуют в международных усилиях по исследованию Луны. (...) Но Луна - это только начало. Аль Марри подтвердил, что конечной целью ОАЭ является Марс. (...) ОАЭ в 2017 году объявили об амбициозной цели - создании поселения людей на Марсе к 2117 году".
- Янь Дунцзе. «Нация смело опирается на научные достижения» - Янь Дунцзе. "Год научных достижений "не от мира сего" (Yan Dongjie, Nation boldly builds on scientific breakthroughs -- Yan Dongjie, A year of 'out of this world' science achievements) (на англ.) «China Daily», 14.02.2025 в pdf - 1,22 Мб
"В прошлом году [в 2024 году] в Китае были достигнуты значительные успехи в области науки и техники, поскольку страна стремится стать "сильной страной в области науки и техники" к 2035 году. (...) Одним из таких примеров были лунные миссии Китая на обратной стороне Луны. (...) Достижение Чанъэ-6 по доставке первых в мире образцов грунта с обратной стороны Луны было признано одним из 10 главных научных событий 2024 года по версии специализированной газеты и СМИ Science and Technology Daily. Ранее представление мирового научного сообщества об обратной стороне Луны основывалось в основном на исследованиях с помощью дистанционного зондирования. 25 июня [2024 года] лунный зонд "Чанъэ-6" впервые в истории человечества доставил на Землю почти 2 килограмма лунных образцов. Эти образцы были собраны в бассейне Айткен на Южном полюсе, самом большом, глубоком и древнем бассейне на Луне. (...) Профессор Ли Цюли из Института геологии и геофизики Китайской академии наук (CAS) подчеркнул важность этого исследования. "Разгадка вулканической истории обратной стороны Луны имеет решающее значение для понимания дихотомии полушарий Луны", - сказал он. (...) Эти исследования выявили активность магмы на поверхности Луны около 4,2 миллиарда лет назад, которая продолжалась по меньшей мере 1,4 миллиарда лет, что еще больше обогатило научное понимание строения Луны и её эволюции. (...) С 2021 года китайские ученые также используют образцы лунного грунта, доставленные миссией "Чанъэ-5", чтобы продемонстрировать, что значительная активность магмы все еще существовала на ближней стороне Луны 2 миллиарда лет назад, а незначительная вулканическая активность сохранялась еще 120 миллионов лет назад. В июле [2024 года] внимание мировой общественности привлекло еще одно новаторское открытие, когда китайские ученые обнаружили молекулярную воду в образцах лунного грунта, доставленных "Чанъэ-5". "На поверхности Луны из-за высоких температур и вакуума жидкая вода существовать не может, поэтому на этот раз была обнаружена кристаллическая вода. Это означает, что молекулы воды объединились с другими ионами, образовав кристаллы", - сказал Цзинь Шифенг, младший научный сотрудник Института физики CAS. (...) обнаружение кристаллической воды на Луне впервые. (...) Наличие воды на Луне имеет решающее значение для лунных исследований и освоения ресурсов. Отсутствие минералов, содержащих воду, в образцах лунного грунта, привезенных с миссий "Аполлон", привело к основному предположению в науке о Луне, что на Луне нет воды". - Вторая статья: "В феврале прошлого года [2024] Большая высокогорная обсерватория воздушных ливней, расположенная на вершине гора в провинции Сычуань, обнаружила гигантскую пузырчатую структуру гамма-излучения сверхвысокой энергии в области звездообразования Лебедя. Это был первый источник сверхускоряющего излучения, который когда-либо был идентифицирован. Космические лучи - это заряженные частицы из внешнего пространства, состоящие в основном из протонов. Происхождение космических лучей - одна из важнейших проблем современной астрофизики. Измерение гамма-излучения стало очень эффективным средством изучения происхождения космических лучей, сказал Цао Чжэнь, ученый из Института физики высоких энергий Китайской академии наук. (...) В апреле [2024 года] Китай выпустил первый в мире высокоточный лунный геологический атлас. С момента реализации Соединенными Штатами программы "Аполлон" в 1960-х годах геологические исследования Луны проводились с использованием лунных геологических карт, разработанных в ту эпоху. По данным Института геохимии CAS, после дальнейших исследований эти лунные геологические карты больше не могли удовлетворять будущим потребностям в научных исследованиях и освоении Луны. С 2012 года исследовательская группа из института использует научные данные китайской миссии по исследованию Луны "Чанъэ" в качестве основы для составления серии цифровых геолого-структурных карт Луны в масштабе 1:250 000 путем изучения и обобщения таких элементов, как структура лунных пород, геологическое строение и возраст. (...) В октябре [2024 года] зонд "Эйнштейн", космический научный спутник, управляемый Национальным центром космических наук Китая при CAS, опубликовал первую серию результатов научных исследований. В апреле [2024 года] было обнаружено особое переходное небесное тело, которое, скорее всего, относится к ранее неизвестной категории переходных небесных тел. (...) С момента своего запуска 9 января прошлого года [2024] спутник обнаружил 60 подтвержденных переходных небесных тел, включая звезды, белых карликов, нейтронные звезды, различные типы черных дыр, гамма-всплески, сверхновые и более 480 звездных вспышек".
- Алекс Уилкинс. Самое близкое из когда-либо замеченных колец Эйнштейна (Alex Wilkins, Closest ever Einstein ring spotted) (на англ.) «New Scientist», том 265, №3530 (15 февраля), 2025 г., стр. 15 в pdf - 1,73 Мб
Подпись к фотографии: "Астрономы обнаружили самое близкое из когда-либо существовавших колец Эйнштейна - редкое явление, когда свет от удаленной галактики отклоняется под действием силы тяжести галактики, расположенной ближе к Земле. Томас Коллетт (Thomas Collett) из Университета Портсмута, Великобритания, и его команда выяснили, что галактика NGC 6505, которая находится примерно в 600 миллионах световых лет от Земли, на самом деле преломляет свет второй галактики, расположенной позади нее, примерно в 6 миллиардах световых лет от нас. Кольцо Эйнштейна - круг в центре этого изображения и крупный план на вставке - было обнаружено при проверке данных раннего тестирования телескопа Euclid, который начал сканировать миллиарды галактик в области, которая в конечном итоге займет треть ночного неба."
- Кэт Хофакер. Принести домой частичку космической истории (Cat Hofacker, Bringing home a piece of space history) (на англ.) «Aerospace America», том 63, №2 (февраль-март), 2025 г., стр. 9 в pdf - 503 кб
"Космический аппарат "Авангард-1" едва не стал первым американским спутником, и эта честь, конечно же, принадлежит "Эксплореру-1". Однако это первый спутник, преобразующий солнечный свет в электричество. Теперь алюминиевая сфера размером с грейпфрут с шиповидными антеннами может получить еще одно отличие. Инженеры и аналитик-исследователь из консалтинговой фирмы Booz Allen Hamilton, базирующейся в Вирджинии, предположили, что владельцы Vanguard 1 могли захватить его на орбите и вернуть на Землю. (...) поисковый спутник так и не был запущен. Однако сейчас интерес к этому растет, учитывая проблему орбитального мусора и желание продлить срок службы спутников путем их ремонта или дозаправки на орбите. По словам Мэтта Билле, аналитика Booz research и ведущего автора статьи, Vanguard 1 - это идеальное сочетание "огромной исторической ценности" и технической сложности для демонстрации технологий, необходимых в растущей сфере обслуживания. (...) Пока, по его словам, никаких дополнительных обсуждений не проводилось, но он узнал, что обе организации [Военно-морская исследовательская лаборатория, которая построила спутник и владеет им, и НАСА] по отдельности изучают возможность проведения миссии по возвращению. Авторы считают, что наилучшим вариантом была бы миссия, состоящая из двух частей: во-первых, оценить состояние "Авангарда", вероятно, с помощью космического аппарата, оснащенного камерами для получения изображений и других измерений с близкого расстояния. (...) Большой вопрос заключается в том, возможен ли вообще захват Vanguard, учитывая, что его многочисленные антенны "в настоящее время считаются слишком хрупкими для использования в качестве захватов или точек крепления", - говорится в документе. Если оценка покажет, что поиск возможен, следующим решением будет отправка полуавтономного корабля или экипажа из людей. (...) Для сценария с экипажем одной из возможностей может быть отправка модифицированной капсулы SpaceX Crew Dragon, подобной той, в которой находились миллиардер Джаред Айзекман и три других пассажира. в сентябре [2024]. Учитывая, что носовое отверстие Dragon было достаточно большим, чтобы Айзекман и инженер SpaceX Сара Гиллис могли протиснуться в него для своего "выхода в открытый космос", авторы подозревают, что экипаж мог бы таким образом поместить Vanguard 1 в Dragon и роботизированно упаковать его в контейнер для обратного полета."
- Пол Маркс. Преодолевая страх темноты (Paul Marks, Beating the fear of darkness) (на англ.) «Aerospace America», том 63, №2 (февраль-март), 2025 г., стр. 16-21 в pdf - 1,26 Мб
"Земля, возможно, не главный объект, получающий энергию от работающей космической солнечной энергетической системы. Космические аппараты на поверхности Луны могут стать первыми, кто получит выгоду, и, возможно, уже в 2028 году. Такова цель канадского стартапа Volta Space Technologies. Эта небольшая компания в Монреале планирует запустить на окололунную орбиту группировку из от трех до 30 спутников, собирающих солнечный свет, каждый из которых будет излучать инфракрасную лазерную энергию на луноходы, посадочные модули, жилые комплексы с экипажами и научные платформы. Зачем? (...) Ни одно место [на Луне] не получает солнечного света более 14 земных дней, прежде чем оно снова погрузится во тьму (а постоянно затененные области кратеров вокруг южного полюса никогда не получают солнечного света). И в этом заключается проблема. С наступлением лунной ночи температура резко падает с дневного максимума в 120 градусов по Цельсию до явно низких минус 133 градусов. В постоянно затененных районах некоторых кратеров температура составляет минус 246 градусов как ночью, так и днем. При таких температурах аккумуляторы и электроника космических аппаратов становятся хрупкими, выходят из строя и не могут выжить, если не будет сохранено достаточное количество электроэнергии для питания теплых электронных блоков для терморегулирования. Но дополнительная мощность означает дополнительные аккумуляторы, а при стоимости в 1 миллион долларов за килограмм полезной нагрузки, доставляемой на Луну, это редкая роскошь, говорит Паоло Пино, технический директор и соучредитель Volta (...) В октябре [2024 года] на ежегодном Международном астронавтическом конгрессе в Нью-Йорке в Милане они [Пино и его коллеги] рассказали, что Volta разрабатывает и проводит наземные испытания технологии для использования солнечной энергии космического базирования на Луне. Согласно планам, созвездие, получившее название LightGrid, первоначально будет состоять из трех 300-килограммовых малых спутников, количество которых достигнет 30, и все они будут вращаться вокруг Луны на высоте 100 километров. Каждый маленький спутник будет собирать солнечную энергию с помощью недорогих коммерческих солнечных панелей, готовых к использованию. Эти спутники будут отслеживать местоположение любого наземного марсохода или посадочного модуля, который запросит подачу энергии, а затем передавать энергию с помощью управляемого инфракрасного (ИК) лазера на LightPort - фотоэлектрический приемник энергии Volta, установленный на нем. Полученная таким образом энергия поможет управлять наземными работами, поддерживать в теплом состоянии критически важную электронику и/или заряжать аккумуляторы, а не позволит машине замерзнуть и выйти из строя. По словам Пино, такое питание лунных объектов имеет преимущества перед использованием тепла от разлагающихся ядерных источников энергии в радиоизотопном термоэлектрическом генераторе (...) Это не значит, что альтернатива Volta не представляет собой множество многогранных инженерных задач для ее команды исследователей и разработчиков. К ним относится разработка излучающего энергию лазера, способного генерировать нерасходующийся мощный инфракрасный луч; точная система слежения, способная наводить лазер на объекты на поверхности Луны с быстро движущегося спутника; и разработка светового порта. Архитектура LightGrid предусматривает использование мощного луча мощностью 1800 Ватт и диаметром 50 сантиметров, для чего Volta разрабатывает - частично за счет гранта Канадского космического агентства - инфракрасный волоконный лазер и телескопическую оптику для генерации и коллимации луча, чтобы его энергия оставалась четко сфокусированной и не расходилась, говорит Пино. (...) Модель лазерной инженерии в настоящее время находится на уровне технологической готовности (TRL) 6 по шкале, используемой НАСА и США. Военные должны оценить технологию, говорит Пино. "Он прошел все основные экологические испытания, включая радиационные, ударные и вибрационные, термовакуумные, испытания на долговечность и термоциклирование". Но к концу 2026 года, когда компания надеется провести испытания лазера в режиме мощного излучения с испытательного спутника, находящегося на низкой околоземной орбите, он должен быть на уровне TRL 9, говорит он, другими словами, готов к работе на орбите. (...) Создание лазера - это одно. но совсем другое дело - направить луч диаметром 50 см на лунную поверхность с движущегося спутника. Для этого спутнику и лазерной установке потребуется маневрировать. (...) В июне [2024 года] Volta начала испытания лазерной оптической юстировки на сельскохозяйственных угодьях в Сен-Мишеле, к югу от Монреаля. (...) В ноябре [2024 года] испытания были перенесены в закрытое помещение на промышленный склад в Богарнуа, к юго-западу от Монреаля. Здесь более новая модель лазера направляла луч на прототип мини-лунохода, находящийся на расстоянии 200 метров, к которому был прикреплен приемник LightPort размером 10 на 10 см. (...) Для реальных лунных операций Volta планирует построить увеличенный вариант LightPort размером 30 на 30 см, чтобы получить базу размером 50 см. Весь модуль LightPort в сборе весит 2 кг и первоначально будет обеспечивать мощность в 100 Вт, а при желании клиентов — и больше. Когда спутник LightGrid пролетает над лунным горизонтом на высоте 100 км, его инфракрасный лазер сканирует область, где, по его расчетам, должен находиться луноход или посадочный модуль. После срабатывания LightPort передает сигнал подтверждения "вы меня заметили" обратно на спутник. Затем космический аппарат отслеживает этот объект и начинает посылать четырехминутный импульс энергии с помощью лазера. Затем дополнительные проходы через спутник обеспечивают еще большую мощность. (...) Осуществятся ли планы Volta, во многом зависит от того, будут ли клиенты готовы платить за их предложение "энергия как услуга". По словам компании, коммерческие перспективы хорошие. (...) [Пино:] "Это [космическая солнечная энергетика] больше не является научной фантастикой".
- Кэт Хофакер. Два запуска - две компании - два миллиардера (Cat Hofacker, Two launches - two companies - two billionaires) (на англ.) «Aerospace America», том 63, №2 (февраль-март), 2025 г., стр. 22-27 в pdf - 1,69 Мб
"New Glenn design от Blue Origin и сверхтяжелые транспортные средства SpaceX Starship, как известно, конкурируют за то, чтобы открыть космические рубежи для освоения человеком НАСА и заселения другими компаниями, но у Безоса есть потенциальная выгода в ближайшей перспективе. Одним из них является возможный переход рынка от SpaceX к Blue. "У них есть преимущество опоздавших", - говорит Крис Комбс, профессор аэродинамики Техасского университета в Сан-Антонио, который внимательно следит за двумя программами. Он имеет в виду ту особенность развития технологий, которая могла бы позволить Blue освоить посадку на ракету-носитель и повторное использование быстрее, чем это удалось SpaceX со своими ракетами Falcon, научившись на ошибках SpaceX. Первая посадка ракеты-носителя Falcon произошла во время 20-го полета проекта, но Комбс прогнозирует, что Blue сможет легко посадить ракету-носитель в течение 10 полетов. Дебют New Glenn также на шаг приблизил разработку к получению сертификата Космических сил США для запуска крупных разведывательных и военных спутников. (...) Участие Blue в конкурсе, как ничто другое, демонстрирует, что методы SpaceX - не единственный способ создать совершенно новый класс ракет. Когда первый New Glenn стартовал ранним утром 16 января [2025 года] с мыса Канаверал и вывел свою демонстрационную полезную нагрузку на среднюю околоземную орбиту, прорыв стал кульминацией по меньшей мере 10-летних исследований и испытаний без каких-либо взрывов стартовых площадок или "быстрой внеплановой разборки", как SpaceX называет взрывы транспортных средств. (...) Контраст в подходах к разработке был наглядно продемонстрирован 15 часами позже, когда седьмой сверхтяжелый космический корабль Starship поднялся в небо во второй половине дня из Бока-Чика, штат Техас, для испытания первого космического корабля Block 2 Starship, усовершенствованного разгонного блока. (...) SpaceX потеряла связь с кораблем через несколько минут после начала полета и в течение часа в социальных сетях появились видеоролики, на которых были видны обломки, летящие к земле над островами Теркс и Кайкос. (...) Сверхтяжелая ракета-носитель, однако, вернулась на стартовую площадку и опустилась, чтобы произвести второй захват "палочки для еды" стартовой вышкой. Таков космический полет: "Нью-Гленн" вышел на орбиту, но его ракета-носитель была потеряна. Космический корабль не достиг орбиты, но его ракета-носитель вернулась в целости и сохранности. (...) Для него [Илона Маска] потеря аппарата была не неудачей, а быстрым способом выяснить, была ли проблема с модернизированной конструкцией, чтобы ее можно было устранить. (...) Для Blue Origin, базирующаяся в Кенте, штат Вашингтон, компания New Glenn реализует свой девиз "gradatim ferociter", что в переводе с латыни означает "шаг за шагом, яростно", который отражает ее подход к разработке технологий. (...) Какими бы разными ни были подходы Blue и SpaceX к принятию рисков, они оба являются примерами итеративного проектирования, при котором продукты постепенно совершенствуются, - говорит Комбс, профессор аэродинамики. (...) создание десятков многомиллионных транспортных средств - это "настоящая роскошь, доступная очень немногим организациям", которые действительно могут себе это позволить. Когда тебя поддерживает самый богатый человек в мире, это помогает". Конечно, Безос - второй по богатству человек в мире, так что теоретически Блю мог бы поступить так же, но не сделал этого. (...) Хотя SpaceX часто описывает свой подход как лучший способ быстро добиться прогресса, это не всегда соответствует действительности. Комбс отмечает, что версия итеративного проектирования Blue Origin требует более длительной стадии разработки, но "потенциально она может быть более эффективной" в долгосрочной перспективе. (...) Он отмечает, что космическому кораблю еще предстоит совершить облет Земли. (...) Эти две ракеты не имеют одинаковой грузоподъемности. Проект New Glenn рассчитан на 45 метрических тонн — вдвое больше, чем Falcon 9 может отправить на низкую околоземную орбиту, но меньше, чем 64 метрические тонны Falcon Heavy. Starship превзошел бы их всех, благодаря своему обтекателю диаметром 9 метров, рассчитанному на перевозку 100 метрических тонн в многоразовом режиме и до 250 тонн в расходуемом. (...) В ближайшей перспективе Blue заключит контракты на запуск спутников для коммерческих компаний, создающих мегаконстеллары, в дополнение к конкуренции за запуски в целях национальной безопасности. Более долгосрочные планы предусматривают отправку грузов и астронавтов НАСА на Луну в рамках программы Artemis. На момент написания этой статьи заявленные задачи Starship заключаются в запуске Starlinks, доставке астронавтов и грузов на Луну для НАСА и в том, чтобы когда-нибудь осуществить мечту Маска об отправке 100 человек одновременно на Марс. (...) Несмотря на многочисленные различия, New Glenn и Starship разделяют акцент на возможности многократного использования. (...) Безос предлагает создать колонии на низкой околоземной орбите, где миллионы людей могли бы жить и работать, а Маск часто говорит о создании "самодостаточного" города на Марсе. Оба варианта требуют возможности часто запускать большое количество членов экипажа и грузов за один раз. Ракеты, предназначенные для многократного запуска и приземления, были бы лучшим способом достичь этого".
- Рэндалл Хайман. New Horizons измеряет, насколько темной может стать Вселенная (Randall Hyman, New Horizons measures how dark the universe can get) (на англ.) «Astronomy», том 53, №2, 2025 г., стр. 36-37 в pdf - 784 кб
"Каким бы черным ни казался космос, даже в самом темном уголке Вселенной есть свет. Измерение этого крошечного проблеска, называемого космическим оптическим фоном (COB), проливает свет на энергетический баланс всей Вселенной, один из священных граалей космологии. Благодаря последним данным, собранным космическим аппаратом New Horizons, который находится в настоящее время в 57 раз дальше от Солнца, чем Земля, астрономы полагают, что они, наконец, определили количество COB. Это не что иное, как совокупный свет сотен миллиардов галактик, образовавшихся с начала времен. (...) Измерить, насколько темным является космос, звучит просто, но сделать это точно довольно сложно. Начнем с того, что это невозможно сделать из внутренней части Солнечной системы из-за явления, знакомого звездочетам: зодиакального света. На Земле это выглядит как треугольник света после захода солнца или перед восходом солнца, вызванный облаком пылевых частиц, которые вращаются вокруг Солнца и рассеивают его свет. Чтобы избежать этого света, исследователи обратились к космическому аппарату New Horizons, который совершил первый в истории облет Плутона в 2015 году. (...) исследователи поняли, что могут воспользоваться преимуществом расположения аппарата далеко в поясе Койпера, который практически невосприимчив к зодиакальному свету. Команда опубликовала первоначальные результаты в 2021 году, используя наблюдения из архивов New Horizons (...), но их анализ показал, что COB оказался ярче, чем ожидалось, что указывает на какую-то необъяснимую космическую составляющую. Для проведения исследования команда провела новые наблюдения с помощью дальномерного разведывательного тепловизора New Horizons (LORRI), чтобы создать более полный обзор COB, который в конечном итоге включал 23 поля зрения. (...) Важно отметить, что это более широкое исследование позволило команде использовать карту галактической пыли, составленную миссией Европейского космического агентства "Планк". (...) команда могла использовать ее для оценки того, как эти пылевые облака будут рассеивать оптический свет, и скорректировать это на снимках COB. (...) Результаты показали, что команда изначально недооценила количество света, рассеиваемого пылью в Млечном Пути, и переоценила интенсивность галактического излучения. (...) Их измерения все еще немного превышают предполагаемую общую величину всего галактического света. Это оставляет некоторое пространство для маневра, которое потенциально может пригодиться для будущих открытий источников света. Но самое простое объяснение, как выразился [Марк] Постман [из Научного института космического телескопа в Балтиморе], заключается в том, что "то, что мы видим, когда смотрим на космический оптический фон, является суммой всего света, который образуется в ходе истории звездообразования во всей Вселенной".
- Кори Хейнс. У Бетельгейзе может быть бетельбадди* (Korey Haynes. Betelgeuse may have a betelbuddy*) (на англ.) «Astronomy», том 53, №2, 2025 г., стр. 8-9 в pdf - 585 кб
"Теперь астрономы думают, что они, возможно, нашли ключ к странному поведению Бетельгейзе: два независимых исследования, опубликованные на сервере препринтов arXiv, утверждают, что Бетельгейзе на самом деле является частью двойной системы с ранее неизвестной звездой-компаньоном. Эта предполагаемая вторая звезда намного меньше Бетельгейзе и пока остается невидимой; обе команды предположили о ее присутствии, основываясь на том, как ее гравитация мягко перемещает Бетельгейзе взад и вперед по небу. Но если астрономы смогут подтвердить существование звезды наблюдениями, это может объяснить самую продолжительную пульсацию Бетельгейзе, которая десятилетиями ставила астрономов в тупик...) Звезда пульсирует по яркости не в едином ритме, а в диапазоне перекрывающихся ударов с периодами от нескольких сотен дней до нескольких тысяч дней. Большинство исследователей полагают, что ее 416-дневный цикл - это так называемая основная мода звезды (ее собственные колебания с самой низкой частотой), а более короткие моды - это обертоны (более высокие частоты первых). Но некоторые исследователи полагают, что самый длинный цикл Бетельгейзе, длящийся 2170 дней, является основным режимом работы звезды. Если это правда, то это означает, что Бетельгейзе в два раза больше, чем принято считать, и в любой момент может превратиться в сверхновую. (...) Ключевым моментом для обоих исследований было сравнение LSP Бетельгейзе (длинного вторичного периода) с астрометрическими данными и данными о лучевой скорости, которые показали, что звезда движется очень незначительно по небу, словно притянутое невидимым спутником. Команда под руководством Джареда Голдберга из Центра вычислительной астрофизики при Институте Флэтайрон в Нью—Йорке проанализировала астрометрические наблюдения — измерения положения Бетельгейзе - с помощью космического телескопа Gaia Европейского космического агентства и обнаружила, что движение Бетельгейзе можно объяснить только тем, что вокруг нее вращается звезда-компаньон с малой массой, которая совершает оборот каждые 2170 дней. (...) Вторая группа, возглавляемая Морганом Маклеодом из Гарвард-Смитсоновского центра астрофизики в Кембридже, штат Массачусетс, использовала астрометрические данные, а также накопленные за столетие данные о лучевой скорости, полученные из спектров с красным и синим смещениями; они показывают, как быстро Бетельгейзе приближается к нам и удаляется от нас. (...) Обе команды сходятся во мнении, что масса невидимого спутника не может быть намного больше массы Солнца, что составляет всего одну двадцатую массы Бетельгейзе. (...) Вместо того, чтобы спутник блокировал свет от Бетельгейзе и вызывал падение яркости, спутник, по-видимому, расчищает пыль, как снегоочиститель, заставляя свет Бетельгейзе сиять немного ярче во время затмения. (...) Следующий очевидный шаг - попытаться наблюдать за спутником, но Голдберг говорит, что "вероятно, это невозможно даже при использовании современных инструментов".
*[betelbuddy = сочетание бетель - от Бетельгейзе и - приятель, компаньон]
- Персеверанс достигает края кратера (Perseverance reaches crater’s rim) (на англ.) «BBC Sky at Night Magazine», №237 (февраль), 2025 г., стр. 10 в pdf - 735 кб
"После долгого и трудного восхождения марсоход НАСА "Персеверанс" наконец достиг вершины кратера Езеро. Марсоходу потребовалось три с половиной месяца, чтобы подняться по вертикали на 500 метров, временами взбираясь по склонам с 20-процентным уклоном, и оказаться в районе, известном как Лукаут-Хилл. (...) Компания Perseverance приступает к своей пятой научной кампании, получившей название "Северный край". В течение следующего года он преодолеет около 6,4 км, посетив четыре участка, представляющие геологический интерес, для проведения измерений и сбора образцов, которые будут добавлены к уже собранным в кратере, с надеждой позже вернуть их на Землю для изучения. "Кампания Northern Rim приносит нам совершенно новые научные достижения, поскольку Perseverance исследует принципиально новую геологию", - говорит Кен Фарли, научный сотрудник проекта Perseverance в Калифорнийском технологическом институте. "Это знаменует наш переход от камней, которые частично заполняли кратер Джезеро, когда он образовался в результате мощного удара около 3,9 миллиарда лет назад, к камням из глубин Марса, которые были выброшены вверх, образовав край кратера после удара". (...) "Кампания начинается на ура, потому что холм Гамамелиса представляет собой более чем 100-метровое слоистое обнажение, где каждый слой подобен странице в книге марсианской истории. Спускаясь с холма, мы словно возвращаемся в прошлое", - говорит Кэндис Бедфорд, специалист по настойчивости из Университета Пердью." Комментарий Криса Линтотта (Chris Lintott): "Perseverance везет с собой хорошо зарекомендовавший себя обломок скалы - крошечный осколок метеорита SaU008, найденного в пустынях Омана 25 лет назад, который, похоже, прилетел с Марса. Доставив на Красную планету кусочек Марса, который мы исследовали в земных лабораториях, можно откалибровать данные, которые миссия отправит домой. Мне также кажется, что это символ, частичка планеты, потерянной миллиарды лет назад, а теперь возвращенной домой в рамках миссии по пониманию истории этого очень чуждого места. Цель Perseverance - отплатить им тем же, собрав образцы, которые однажды могут быть доставлены на Землю; позволит ли это финансирование, еще предстоит выяснить. Скрестим пальцы."
- Эми Артур. «Наука о научной фантастике» (Amy Arthur, The science of sci-fi) (на англ.) «BBC Sky at Night Magazine», №237 (февраль), 2025 г., стр. 28-33 в pdf - 2,71 Мб
"Величайшие научно-фантастические блокбастеры Голливуда возносят нас к звездам, знакомят с инопланетными мирами и воображают будущее человечества в космосе. Но как часто они правильно излагают научные данные? (...) Здесь мы рассмотрим шесть распространенных ошибок, которые Голливуд допускает в отношении космической науки, раскрывая правду, стоящую за вымыслом. (...) [1] Пожар в условиях микрогравитации. (...) Любой пожар в космосе будет выглядеть и вести себя иначе, чем зажженные свечи на вашем праздничном торте дома, хотя, и это зависит от силы тяжести. (...) в условиях микрогравитации горячий воздух образует сферическую форму вокруг источника огня. Это ограничивает степень разгорания огня и продолжительность его горения, поскольку отсутствуют конвекционные потоки, которые обеспечивали бы пламя свежим кислородом для горения. Кроме того, огонь, скорее всего, будет подавляться собственными газами сгорания, что ограничивает срок его горения. Итак, та ключевая сцена в фильме "Гравитация", где героиня Сандры Буллок борется с бушующим пожаром на борту Международной космической станции? Чистый вымысел. (...) [2] Бойцовский клуб в невесомости. (...) предположим, что речь идет о драке в помещении, где воздух насыщен кислородом. Моментум - третий противник в любом кулачном бою. Законы Ньютона гласят, что на каждое действие существует равная и противоположная реакция. (...) Однако в условиях микрогравитации удар отбросил бы нас назад. Мы могли бы использовать это в своих интересах: упираясь в стену, мы придаем нашей атаке еще большую силу. (...) А как насчет сражений между космическими кораблями? И пушки, и лазеры будут работать, хотя они также будут оказывать равное и противоположное воздействие на ваш собственный корабль. Чтобы оставаться неподвижным, вам нужно включить несколько двигателей. (...) [3] Планеты, состоящие из одного биома. Если что и нравится писателям-фантастам, так это планеты с одним биомом. (...) В отличие от Земли, которая состоит из различных биомов, эти планеты характеризуются своей однородностью. (...) Если жизнь приводит к созданию нескольких биомов на одной планете, то мы ожидаем увидеть большую сложность на обитаемых планетах из нашей любимой научной фантастики. (...) когда разумные формы жизни эволюционируют, возможность существования планеты с одним биомом кажется очень маловероятной. [4] Взрывы в космосе. Большинство великих научно-фантастических взрывов сопровождаются оглушительным "ка-бум!", но вы уже знаете, что такое возможно только в Голливуде. В действительности взрыв в космосе был бы абсолютно бесшумным. (...) в космическом пространстве очень мало частиц. При первоначальном взрыве все равно будет выделяться газ под высоким давлением и при высокой температуре, но не будет атмосферы, способной перенести ударную волну. Это означает, что взрыв в космосе не будет таким разрушительным, как на Земле. (...) При отсутствии кислорода в космосе взрыв не вызовет сильного пожара. (...) огромные взрывы во время космических сражений в "Звездном пути" впечатляюще нереалистичны, "Интерстеллар" 2014 года - хороший пример фильма, в котором взрыв в космосе показан почти правильно. Сцена происходит в полной тишине, и огонь появляется только там, где из взрывающегося корабля выходит кислород. [5] Опасно плотные астероидные поля. Независимо от того, снимаетесь ли вы в фильме о конце света или летите на космическом корабле в глубоком космосе, в какой-то момент вашего научно-фантастического рассказа вы, скорее всего, столкнетесь с опасностями, связанными с плотным полем астероидов. (...) На самом деле расстояние между отдельными астероидами огромно. (...) среднее расстояние между отдельными астероидами составляет чуть менее 1 миллиона километров (...) Несколько космических аппаратов благополучно и успешно пролетели через пояс астероидов. (...) [6] Скорость, превышающая скорость света. (...) Есть несколько способов, которыми писатели-фантасты обходят эту проблему [огромных расстояний между галактиками], связанная с перемещением их главных героев из одной точки пространства в другую, включая телепортацию, червоточины и путешествия со сверхсветовой скоростью. (...) К сожалению, ничто не только не может двигаться быстрее скорости света, но и, согласно специальной теории относительности Эйнштейна, только объекты с нулевой массой в состоянии покоя (например, фотоны) могут двигаться со скоростью света. Объекты, обладающие массой, такие как мы и космические корабли, всегда будут перемещаться с досветовыми скоростями".
* биом - биологическое сообщество (растительный и животный мир), сформировавшееся в ответ на физическое окружение и региональный климат.
- Дэймонд Беннингфилд. Земля может пережить гибель Солнца (Damond Benningfield, Earth May Survive the Sun’s Demise) (на англ.) «Eos. Earth & Space Science News», том 106, №2, 2025 г., стр. 6-7 в pdf - 478 кб
"Будущее Земли безрадостно. В лучшем случае наша планета превратится в догорающий пепел, когда Солнце начнет расширяться в конце своей жизни. В худшем случае Солнце поглотит ее, не оставив никаких следов того, что она когда-либо существовала. Астрономы нашли ключ к разгадке того, по какому пути может следовать Земля в звездной системе, находящейся на расстоянии около 4300 световых лет от нас. Там скалистая планета вращается вокруг останков некогда солнцеподобной звезды на расстоянии, близком к тому, на котором могла бы остановиться Земля, если бы она пережила предсмертные муки нашей собственной звезды. (...) Система KMT-2020-BLG-0414L была обнаружена в 2020 году Корейской сетью микролинзирующих телескопов, состоящей из трех автоматизированных 1,6-метровых телескопов в Южном полушарии. (...) Кеминг Чжан, астрофизик, работающий в настоящее время в Калифорнийском университете в Сан-Диего (...) и его коллеги рассмотрели несколько сценариев, которые могли бы объяснить это открытие. Они пришли к выводу, что вместо яркой звезды главной последовательности эта звезда должна быть более тусклым белым карликом, примерно вдвое менее массивным, чем Солнце. (...) Это первый возможный мир земного типа, обнаруженный на орбите белого карлика. (...) Во время своего обращения на главной последовательности звезда превращает водород в своем ядре в гелий. Когда этот процесс заканчивается, звезда расширяется, превращаясь в красного гиганта. Ожидается, что Солнце, возраст которого составляет 4,6 миллиарда лет, вступит в эту фазу примерно через 6-7 миллиардов лет, увеличившись в десятки раз по сравнению со своим нынешним диаметром. Он будет оставаться в этой фазе красного гиганта в течение миллиарда лет, после чего сбросит свои внешние слои, оставив только горячее, плотное, ныне мертвое ядро: белый карлик, подобный тому, что находится в центре KB200414. Когда Солнце станет красным гигантом, оно поглотит Меркурий и Венеру. Марс и другие внешние планеты почти наверняка выживут. Однако судьбу Земли предсказать сложнее из-за сложной природы последних дней Солнца. Одна из возможностей состоит в том, что по мере того, как Солнце теряет массу и его гравитационное притяжение к Земле ослабевает, наша планета будет мигрировать наружу (хотя ее океаны и атмосфера выкипят миллиарды лет назад). По словам Чжана, когда Солнце превратится в белого карлика, оно потеряет половину своей массы, и Земля, если она выживет, может расширить свою орбиту вдвое по сравнению с нынешним размером. Это примерно столько же, сколько до каменистой планеты KB200414, что позволяет предположить, что ее постигла аналогичная участь. Сценарий еще больше усложнится из-за движения других планет, особенно Юпитера и Сатурна, которые могут действовать как шары-разрушители. (...) Чрезвычайно большие наземные телескопы, которые, как ожидается, заработают в начале следующего десятилетия, должны обнаружить самого белого карлика, что позволит астрономам подтвердить свои предположения на сценарий, - сказал Чжан."
- Кэтрин Корней, Марсианский метеорит указывает на древнюю гидротермальную активность (Katherine Kornei, Martian Meteorite Points to Ancient Hydrothermal Activity) (на англ.) «Eos. Earth & Space Science News», том 106, №2, 2025 г., стр. 12 в pdf - 382 кб
"В 2011 году в пустыне Сахара был обнаружен поразительный черный камень размером с яблоко. (...) этот метеорит, который стал известен как NWA 7034, или "Черная красавица", отличается от большинства других метеоритов: это кусок Марса. (...) около 200 [из примерно 60 000 метеоритов] относятся к редкой группе марсианских метеоритов. Эти породы были выбиты с поверхности Марса в результате столкновения с астероидом и обладали достаточной кинетической энергией, чтобы вырваться из гравитационного поля планеты. Затем они пересекли орбиту Земли и погрузились в атмосферу, прежде чем в конечном итоге были обнаружены человеком. (...) Джек Гиллеспи, геохимик из Лозаннского университета в Швейцарии (...) и его коллеги недавно проанализировали крупицу циркона из Black Beauty размером около 20 x 30 микрометров.. (...) Циркон - это чрезвычайно прочный минерал, который легко поддается датировке, что делает его идеальным проводником в далекое прошлое. (...) Команда использовала различные методы, в том числе один особенно мощный метод, известный как масс-спектрометрия вторичных ионов по времени пролета, для изучения химического состава зерна. Они обнаружили следовые количества железа, алюминия и натрия. По словам Карла Эйджи, директора Института метеоритики Университета Нью-Мексико, который не принимал участия в исследовании, обнаружение этих элементов в зернах циркона стало большой неожиданностью. "Обычно их там нет". (...) Гиллеспи и его коллеги показали, что атомы железа, алюминия и натрия сохраняются в зонах роста зерен циркона. Это открытие позволяет предположить, что эти неожиданные элементы отложились в процессе кристаллизации зерна, а не были включены в него позднее. Одним из хорошо известных способов получения таких элементов является гидротермальный процесс, при котором циркон кристаллизуется в подземной смеси горячей породы и флюидов на водной основе. Исследователи пришли к выводу, что, вероятно, это зернышко циркона было залито водянистыми жидкостями во время его рождения на Марсе 4,45 миллиарда лет назад. Это самое раннее свидетельство наличия воды на Красной планете, отметила команда."
- Сара Стэнли. «Взрывы из прошлого: новое понимание старых космических бурь" (Sarah Stanley, Blasts from the Past: New Insights from Old Space Storms) (на англ.) «Eos. Earth & Space Science News», том 106, №2, 2025 г., стр. 28 в pdf - 440 кб
"4 августа 1972 года выброс солнечной плазмы потряс магнитное поле Земли после того, как он пронесся в космосе около 14,6 часов — это был самый быстрый полет плазмы от Солнца к Земле, когда-либо зарегистрированный. Возникший в результате этого космический шторм, один из нескольких, произошедших со 2 по 11 августа, вызвал массовые нарушения в работе электрических и коммуникационных сетей и, вероятно, стал причиной случайных взрывов подводных морских мин США в Северном Вьетнаме. Почти два десятилетия спустя, с 6 по 19 марта 1989 года, произошла еще одна серия космических бурь. Самая крупная из них, произошедшая 13 марта, повредила электросети Северной Америки и вызвала 9-часовое отключение электроэнергии в Квебеке, Канада. В новом обзоре Цурутани и др. [в Journal of Geophysical Research: Space Physics, 2024] более подробно рассмотрим события 1972 и 1989 годов, сравнив их друг с другом и с другими историческими космическими бурями. Их исследование подчеркивает потенциальную возможность того, что современные космические бури могут соперничать или даже превосходить по силе самое экстремальное геомагнитное возмущение в истории человечества - Каррингтонское событие 1859 года. (...) Однако у каждой бури были свои особенности. Шторм 1989 года сопровождался двумя выбросами корональной массы, оба из которых происходили медленнее, чем во время рекордного шторма 1972 года, и им потребовалось около 54,5 и 31,5 часов, чтобы достичь Земли. Вспышки на солнце, вызванные событием 1989 года, также были по меньшей мере в 10 раз менее интенсивными, чем вспышки во время шторма 1972 года. Однако основная фаза шторма 13 марта 1989 года, продолжавшаяся более 23 часов, была самой продолжительной в истории наблюдений. (...) Проанализировав данные по обоим событиям, исследователи предполагают, что при немного отличающихся, но реально возможных условиях CME 1972 года мог вызвать шторм еще более сильный, чем разрушительное событие в Кэррингтоне. Они также предполагают, что самый крупный шторм 1989 года на самом деле превзошел событие в Кэррингтоне по одному показателю: количеству энергии, переносимой частицами в кольцевом потоке, потоке заряженных частиц, окружающем Землю, ток которого усиливается во время космического шторма. Событие в Каррингтоне в 1859 году вызвало полярные сияния, которые достигли тропиков и разрушили телеграфное оборудование. Если подобный шторм произойдет сегодня, его разрушительные последствия могут стоить триллионы долларов и оставить миллионы людей без электричества на 2 года."
- Мэтью Р. Фрэнсис. Относительно запутанная проблема с лунными часами (Matthew R. Francis, The Relatively Messy Problem with Lunar Clocks) (на англ.) «Eos. Earth & Space Science News», том 106, №2, 2025 г., стр. 3-4 в pdf - 597 кб
"Который час на Луне? В апреле 2024 года Белый дом обратился к ученым с просьбой установить стандарт лунного времени, рассчитывая на расширение международного присутствия на Луне и создание потенциальных баз для людей в рамках инициативы НАСА "Артемида". Настоящий вопрос заключается не в том, "Который час?", а, скорее, в том, "Как быстро течет время?" (...) "Если мы будем на Луне, часы будут тикать иначе [чем на Земле]", - сказал физик-теоретик Биджунат Патла из Национального института стандартов и Технология (NIST) в Боулдере, штат Колорадо. Он отметил, что из-за движения Луны относительно нас часы должны идти медленнее, чем на Земле, но из-за более низкой силы тяжести часы идут быстрее. "Таким образом, это два конкурирующих эффекта, и конечным результатом этого является смещение на 56 микросекунд в день", - сказал он. Патла и его коллега-физик из NIST Нил Эшби использовали общую теорию относительности Эйнштейна для вычисления этого числа, что является улучшением по сравнению с предыдущими анализами. (...) Хотя разница в 56 микросекунд невелика по человеческим меркам, она существенна, когда речь идет о руководстве несколькими миссиями с высокой точностью или о связи между Землей и Луной. (...) Современная высокоточная навигация основана на синхронизации часов. Это предполагает координацию с использованием радиоволн, которые распространяются со скоростью света. [Шерил] Грэмлинг (Cheryl] Грэмлинг (системный инженер Центра космических полетов имени Годдарда НАСА) отметила, что свет проходит расстояние в 30 сантиметров за 1 наносекунду (0,001 микросекунды) — невероятно короткий промежуток времени по человеческим меркам — поэтому неучет расхождения в 56 микросекунд потенциально может привести к навигационным ошибкам размером до 17 километров в день. Даже малая часть этого неприемлема, когда речь заходит о миссиях Artemis, которые требуют постоянного знания местоположения каждого марсохода, посадочного модуля или астронавта с точностью до 10 метров. (...) Луна движется относительно любой точки на поверхности Земли из-за нашего вращения и своей орбиты вокруг нас, что означает, что с нашей точки зрения любые лунные часы будут казаться идущими медленнее. Кроме того, на любые лунные часы влияет гравитация Луны и Земли. (...) Для правильного учета этих эффектов теории относительности требуется выбрать подходящую систему отсчета. (...) Тем временем физик-теоретик Сергей Копейкин из Университета Миссури и астроном Джордж Каплан из США выяснили, что на часы на Луне влияет гравитация Земли. (...) Военно-морская обсерватория независимо рассчитала временной сдвиг между Землей и Луной на 56 микросекунд. Они также рассчитали меньшие периодические колебания тактовой частоты из-за незначительных изменений приливной силы со стороны Солнца и Юпитера, эффекты наносекундного масштаба, которые, тем не менее, необходимо учитывать для получения 10-метрового масштаба или большей точности навигации. (...) Пройдет много лет или десятилетий, прежде чем Луна будет населена достаточным количеством людей и роботов, чтобы нуждаться в таком уровне хронометража. Однако ученые и инженеры осознают, насколько важно установить лунное стандартное время задолго до того, как в этом возникнет необходимость. Теперь они сделали этот трудный первый шаг к тому, чтобы узнать, который час на Луне."
- Мориба Джа. Как утилизировать космический мусор (Moriba Jah, How to Recycle Space Junk) (на англ.) «Scientific American», том 332, №2 (февраль), 2025 г., стр. 28-33 в pdf - 2,78 Мб
"Десять лет назад человечество запускало в космос около 200 объектов в год. Сейчас мы запускаем более 2600, и нет никаких перспектив замедления темпов. Стремительное расширение деятельности человека в космическом пространстве привело к тому, что околоземная орбита заполнилась космическим мусором, от вышедших из строя спутников до использованных частей ракет. (...) В настоящее время на орбите Земли находится более 25 000 предметов, которые можно отследить, сделанных человеком, размером более 10 сантиметров. Чем больше мы там размещаем, тем больше вероятность того, что куски мусора (...) ударятся о работающие космические аппараты, создавая еще более опасный мусор. (...) Орбитальное пространство - это ограниченный ресурс, и оно быстро расходуется несколькими организациями, в частности SpaceX, OneWeb и Amazon Project Kuiper. SpaceX, например, владеет и управляет большинством всех работающих спутников, и компания планирует запустить еще десятки тысяч спутников для обеспечения глобального широкополосного доступа в Интернет. Аналогичным образом, Amazon планирует развернуть 3236 спутников для своей широкополосной сети. Если мы будем продолжать в том же духе, орбитальное пространство станет непригодным для использования, особенно самый популярный регион — низкая околоземная орбита (НОО), высота которой достигает 2000 километров. (...) Я считаю, что мы должны оставить в прошлом нашу "линейную экономику пространства", когда мы используем пространство и отказываемся от него, и перейти к "экономике кругового пространства" — устойчивому способу использования пространства, в котором особое внимание уделяется повторному использованию, рециркуляции и эффективному управлению космическими ресурсами. (...) это относится к принципам обращения с отходами, предусматривающим, что по истечении срока службы изделие должно быть предназначено для повторного использования или переработки. Первым шагом является проектирование космических аппаратов с использованием материалов, которые сводят к минимуму загрязнение окружающей среды и производят меньше отходов. Второй - ремонт вышедших из строя частей спутников на орбите для продления их жизненного цикла. Третий - переработка материалов с вышедших из строя спутников для использования в новых миссиях без необходимости возвращать спутники на Землю. И, наконец, мы должны собирать и перерабатывать космический мусор, чтобы снизить риск столкновений и вернуть ценные компоненты. (...) Мы должны создать технологию, позволяющую продлить срок службы спутников и сократить потребность в дорогостоящих и ресурсоемких миссиях по замене. Нам нужны космические аппараты, которые могут приближаться к стареющим спутникам и состыковываться с ними, используя роботов для их ремонта, дозаправки и модернизации. (...) Положительным шагом в этом направлении является технология многоразовых ракет, которую разрабатывает SpaceX. Например, ускорители их ракет Falcon 9 могут приземляться вертикально после сброса в космосе после запуска, что позволяет им снова летать. (...) Но пока SpaceX - единственная компания или агентство, запускающее спутники с помощью многоразовых ракет. Нам нужно больше. Также наблюдается движение в сторону обслуживания работающих спутников на орбите. (...) Помимо экономии средств, обслуживание на орбите сокращает частоту запусков новых спутников, что, в свою очередь, сводит к минимуму накопление космического мусора и выбросы парниковых газов, которые возникают при запуске ракет. Удаление мусора с орбиты является еще одной сложной задачей. Различные виды мусора требуют различных методов удаления, и многие идеи исходят от рыбной промышленности: в одних стратегиях используются сети, в других - гарпуны, а в третьих - крючки. (...) Кроме того, сбор любого вида космического мусора обходится очень дорого, потому что все, что не контролируется активно в космосе, падает. (...) Тем не менее, определенный прогресс был достигнут. (...) Наконец, более эффективная двигательная установка позволяет космическим аппаратам расходовать меньше топлива и дольше работать при первоначальной загрузке. Электрические двигательные установки, такие как ионные двигатели и двигатели на эффекте Холла, являются новыми технологиями, которые обеспечивают более высокую эффективность и экономию топлива по сравнению с традиционными химическими двигателями. (...) Одних новых технологий недостаточно, чтобы решить проблему космического мусора — нам также потребуется правовая реформа. (...) Разрозненные нормативные акты в разных странах и регионах также приводят к несогласованности и препятствуют международному сотрудничеству. И многие существующие космические стратегии даже не затрагивают такие устойчивые практики, как обслуживание на орбите, предупреждение образования космического мусора и ответственное использование ресурсов. (...) Правительства могут сыграть решающую роль в стимулировании компаний к проектированию и разработке устойчивых космических систем. Одним из способов добиться этого было бы принятие так называемых законов о расширенной ответственности производителей, которые требуют от компаний помогать в управлении отходами, связанными с технологией, которую они производят. (...) Комитет Организации Объединенных Наций по использованию космического пространства в мирных целях также играет ключевую роль в разработке международного космического права и норм. Его Руководящие принципы по предупреждению образования космического мусора поощряют государства-члены к управлению космическим мусором и содействию устойчивой космической деятельности. Более 100 стран одобрили эти руководящие принципы, включая США, однако сами по себе они не являются действующими законами — это всего лишь рекомендации. (...) Сохранение космической среды для будущих поколений является моральным императивом. В краткосрочной перспективе мы должны принять незамедлительные меры для борьбы с растущей опасностью, связанной с космическим мусором. (...) В долгосрочной перспективе укрепление международного сотрудничества и международных договоров, требующих устойчивой космической практики, имеет решающее значение. (...) Создание замкнутой космической экономики — это не просто вариант, а стратегия, необходимость устойчивого освоения космоса в будущем. Применяя принципы повторного использования, рециркуляции отходов и эффективного управления ресурсами, мы можем снизить риски столкновения с космическим мусором, сохранить ресурсы и обеспечить, чтобы космическое пространство оставалось жизнеспособной областью для научных открытий и коммерческих инноваций".
- Клара Московиц. Анатомия сверхновой (Clara Moskowitz, Anatomy of a Supernova) (на англ.) «Scientific American», том 332, №2 (февраль), 2025 г., стр. 62-67 в pdf - 3,98 Мб
"Астрономы недавно получили новые изображения последствий этого насилия [исчезновения звезд], направив космический телескоп Джеймса Уэбба (JWST) на молодой остаток сверхновой под названием Кассиопея А. Свет от ее взрыва достиг Земли около 350 лет назад, примерно во времена Исаака Ньютона. (...) Недавние фотографии помогают ученым ответить на некоторые из наиболее актуальных вопросов о сверхновых, например, о том, какие типы звезд взрываются разными способами и как именно происходят эти вспышки. (...) Астрономы все еще не могут полностью объяснить взрывную силу сверхновой. (...) На данный момент основная причина взрывов сверхновых остается загадкой. Исследователи подозревают, что разгадка кроется в нейтрино, почти безмассовых частицах, которые имеют тенденцию беспрепятственно проходить сквозь материю. Возможно, при высоких температурах и плотностях в ядре звезды часть энергии нейтрино уходит на создание ударной волны. Но для подтверждения этой идеи необходимы дополнительные наблюдения. Среди открытий JWST о Кассиопее А - слой газа, который вырвался из ее звезды во время взрыва. Эти первые снимки показывают газ до того, как он взаимодействовал с веществом за пределами звезды, и до того, как он был нагрет отражением ударной волны, выброшенной звездой во время своего извержения. Этот первозданный выброс сверхновой демонстрирует паутинообразную структуру, которая дает представление о звезде до того, как она взорвалась. (...) Исследование также выявило неожиданную особенность Кассиопеи А, которую ученые назвали "Зеленым монстром". Астрономы считают, что этот слой газа был выброшен звездой до того, как она взорвалась. (...) Ученых интересует, что происходит, когда обломки сверхновой попадают в вещество Зеленого Монстра. (...) Астрономы продолжат изучать Кассиопею А, хотя их успех заставляет их обратить внимание JWST на некоторые из других примерно 400 идентифицированных остатков сверхновых в нашей галактике. Получение более крупной выборки поможет исследователям связать различия в том, как выглядят и эволюционируют остатки, с различиями между звездами, которые их породили". - На прилагаемых фотографиях показаны снимки Кассиопеи А и "Зеленого монстра", сделанные Хабблом и JWST.
- Клара Московиц. Клуб астронавтов (Clara Moskowitz, The Astronaut Club) (на англ.) «Scientific American», том 332, №2 (февраль), 2025 г., стр. 88-91 в pdf - 2,95 Мб
Инфографика: "На данный момент более 700 человек преодолели отметку в 50 миль (80 км), которая считалась границей космоса, когда впервые начались космические полеты. В то время Советский Союз и США были единственными командами, а военнослужащие в возрасте около 30 лет были практически единственными игроками. С тех пор астронавты изменились во многих отношениях: мужчины и женщины из 47 стран побывали в космосе, в том числе жители всех континентов, большинство из которых работают в космических агентствах, а некоторые - в частных компаниях. Однако стремление к разнообразию не было простым: в 1963 году в СССР в космос полетела первая женщина, но в последующие годы в общей сложности полетели еще только пять женщин-космонавтов, в то время как десятки мужчин-космонавтов повышались летали каждое десятилетие. Число посетителей космоса достигло своего пика в 1990-х годах, когда НАСА совершало в среднем шесть полетов на шаттлах в год, в каждом из которых обычно находилось от пяти до семи астронавтов". - страницы 88-89, вверху: "Ежегодное распределение астронавтов по возрасту, отправляемых в космос. Здесь указаны возрасты астронавтов за каждый год, когда люди летали в космос, а ширина каждого квадрата соответствует количеству летчиков для каждого возраста. Как средний возраст астронавтов, так и разброс по возрастам постепенно увеличивались с течением времени". - страницы 88-89, середина: "Астронавты, отправляемые в космос с течением времени. В течение многих лет НАСА и Российское космическое агентство "Роскосмос" были единственными космическими агентствами в мире. Национальное космическое управление Китая отправило своего первого астронавта в 2003 году. После того, как в 2011 году космические шаттлы НАСА вышли из эксплуатации, НАСА закупило транспорт для своих астронавтов в России, а затем на частных американских космических кораблях". - полный круг = государственный оператор, пустой круг = частный оператор - страницы 88-89, внизу: "Астронавты по регионам гражданства и полу, по десятилетиям. Черная неровная линия разделяет десятилетия космических путешествий. Внутри каждой зоны указано количество космических путешественников для каждого географического региона в разбивке по полу (мужчины выделены сплошным цветом, женщины - полосатым)". - страницы 90-91: "Данные о полетах отдельных астронавтов. Каждая плитка представляет собой отдельного космонавта. Цветные символы и плитки обозначают регион гражданства каждого человека, его пол, количество миссий, продолжительность пребывания в космосе, тип полета и государственный или частный статус. Вертикальными белыми линиями отмечены астронавты, погибшие во время космических полетов, а белыми кружками - астронавты, находившиеся в космосе на момент публикации (декабрь 2024 года)". - Каждый прямоугольник представляет астронавта. Прямоугольники расположены по дате первого полета в космос: от Юрия Гагарина 12 апреля 1961 года (вверху слева) до экипажа миссии Blue Origin NS–28 22 ноября 2024 года (внизу справа). - К сожалению, имя астронавта не называется.
- Фил Плейт. Самый круглый объект во Вселенной (Phil Plait, The Roundest Object in the Universe) (на англ.) «Scientific American», том 332, №2 (февраль), 2025 г., стр. 79-81 в pdf - 831 кб
"Какой самый сферический объект, который мы когда—либо находили - не обязательно самый гладкий, но самый симметричный, когда каждая точка на его поверхности находится на одинаковом расстоянии от центра? (...) Многие крупные объекты круглые, и это не случайно. Во всем виновата гравитация. (...) В какой-то момент гравитация [растущих космических объектов] становится настолько сильной, что все, что торчит слишком высоко, разрушается, и этот процесс в конечном итоге приводит к тому, что объект становится сферическим. (...) Это свойство проявляется у объектов, когда они вырастают примерно до 400 километров в поперечнике, в зависимости от от того, из чего они сделаны. Таким образом, почти любое отдельное тело с таким диаметром или больше будет иметь форму, близкую к сферической: крупные астероиды, спутники, планеты и даже звезды. Итак, какие из них являются наиболее геометрически совершенными сферами? (...) ответ, который я получил, был неожиданным: Солнце — да, наша ближайшая звезда! Звезды, как правило, довольно круглые, но даже самые круглые из них не являются идеальной сферой. Основной причиной этого отклонения является вращение, поскольку оно создает центробежную силу. (...) Величина силы зависит от размера объекта и от того, насколько быстро он вращается — более крупные объекты испытывают большую силу, а более быстрые вращения также увеличивают силу. Солнце, без сомнения, большое: на его диаметре, размером в 1,4 миллиона километров могло бы поместиться более 100 планет земного типа. Но в то же время наше светило вращается медленно, один оборот занимает примерно месяц. Это спокойное вращение может сделать его победителем в конкурсе на округлость. (...) Однако точно определить, насколько круглым является Солнце, оказывается непросто. У него не такая поверхность, как у Земли; оно газообразное, поэтому вещество внутри него становится все менее и менее плотным по мере удаления от центра. Однако вблизи "поверхности" плотность падает так быстро, что с Земли край Солнца кажется резким. Измерить размер солнца с земли сложно, потому что атмосферный воздух на Земле турбулентен, из-за чего этот край не виден. (...) Проведя очень тщательные измерения, они [астрономы] обнаружили, что сплюснутость солнца — насколько оно сплюснуто на полюсе по сравнению с экватором - невероятно мала, при соотношении всего 0,0008 процента. Это означает, что солнце на 99,9992 процента имеет сферическую форму. (...) ученые также обнаружили, что это соотношение, по-видимому, не меняется в зависимости от магнитного цикла Солнца. (...) Я отмечу, что другое тело Солнечной системы имеет почти такую же круглую форму: Венера - и по той же причине. Венера вращается чрезвычайно медленно; один оборот вокруг своей оси занимает около 243 дней. (...) Это свойство делает ее, возможно, более круглой, чем Солнце в принципе, хотя на самом деле перепады высот ее поверхности составляют несколько километров, и, таким образом, в масштабе она не такая круглая, как наша звезда. (...) Другие звезды, однако, могут быть поразительно асферическими. Одна из причин заключается в том, что некоторые из них вращаются так быстро, что центробежная сила на их экваторе огромна (...) Другие объекты могут быть даже круглее нашего Солнца, но они находятся так далеко от наших приборов зондирования, что мы не можем точно их различить. Однако некоторые из них мы можем достаточно надежно изучить, исходя из первых принципов, — например, нейтронные звезды, которые, как класс, являются настоящими тяжеловесными претендентами на звание наиболее сферических объектов. (...) ядро звезды [которая стала сверхновой] сжалось, превратившись, по сути, в шар из нейтронов, всего лишь два десятка километров в поперечнике. (...) Различные силы могут заставлять некоторые нейтронные звезды вращаться чрезвычайно быстро, однако (...) Со временем вращение нейтронной звезды замедляется, и та, которая сформировалась на ранней стадии Вселенной, теперь может быть почти неподвижной. В этом случае интенсивной гравитации (...) было бы достаточно, чтобы превратить нейтронную звезду в почти идеальную сферу, возможно, с разницей в сплющивании между ее экватором и полюсами, измеряемой в атомных долях. Найдут ли астрономы когда-нибудь такую сферическую звезду? Может быть, как только у них дойдут до этого руки."
- Дж.Маки и др., Ingenuity, "Вертолетные камеры Марса: описание и результаты" (J. Maki et al., Ingenuity Mars Helicopter Cameras: Description and Results) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 2685 в pdf - 783 кб
"Вертолет Ingenuity Mars совершил в общей сложности 72 полета на Марсе в период с апреля 2021 по январь 2024 года в рамках миссии по демонстрации технологий. Целью проекта Ingenuity было продемонстрировать полет на двигателе в разреженной атмосфере Марса путем проведения пяти демонстрационных полетов. После успешного выполнения первых пяти полетов вертолет приступил к выполнению демонстрационной миссии, которая включала в себя 67 дополнительных полетов. [Описание камеры] Вертолет Ingenuity был оснащен двумя камерами. Первая камера, камера с низким разрешением и оттенками серого (Navcam), передавала данные слежения в полете в бортовой навигационный компьютер. Вторая камера, цветная камера с высоким разрешением, первоначально предлагалась в качестве разведывательной камеры (ScoutCam) для марсохода [позже переименованная в камеру "Возвращения на Землю" (RTE)]. (...) [Результаты] В общей сложности от Ingenuity было получено 14 561 изображение. Из этих изображений 13 959 были получены с камеры Navcam, а 602 - с камеры RTE. (...) В дополнение к получению изображений во время полетов, изображения RTE, полученные при посадке, также были получены на поверхности. (...) Большинство снимков, полученных в полете, были получены на высоте ~ 5-10 метров. (...) После получения на Земле изображения были обработаны в различные производные графические продукты, включая цифровые стереомодели местности (DTM) и ортомозаики".
- А. Е. Зубарев и др., Полная ортофотомозаика изображений Ingenuity с Navcam (A. E. Zubarev et al., The Complete Orthophotomosaic of Ingenuity Navcam Images) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 1302 в pdf - 697 кб
[Введение] Миссия Mars 2020 "Ingenuity" завершилась в январе 2024 года. Первый марсианский вертолет совершил в общей сложности 72 полета и пролетел более 17 км. Всего 14 553 снимка, в том числе 13 945 снимков с навигационной камеры в оттенках серого (Navcam) и 608 с цветной камеры высокого разрешения (RTE) (...) [Камера] Navcam - это надирная камера с низким разрешением в оттенках серого "рыбий глаз"; RTE - это цветная камера с высоким разрешением, направленная на 45° ниже горизонта вдоль трассы.. (...) Поскольку никаких дополнительных параметров камеры, необходимых для точной обработки изображений, опубликовано не было, а навигационная информация для Ingenuity недоступна в системе отсчета Марса, для выполнения геопривязки изображений Ingenuity требуется справочный фон. Для создания такого фона мы выбрали изображения HiRISE*. [Подготовка справочных данных] На первом этапе были выбраны необработанные фрагменты изображений HiRISE из PDS [Системы планетарных данных НАСА]. Фрагменты каждого изображения были объединены в единое изображение (...) На втором этапе были использованы скорректированные изображения для построения высококачественной цифровой модели рельефа (ЦМР) на основе стереопар, охватывающей всю область полета Ingenuity (~33 км2). Точность полученного ЦМР по вертикали составляет 50 см, размер пикселя по горизонтали - 25 см на пиксель. Ортомозаика была получена с помощью ортотрансформированных изображений и цифровой модели местности (DTM). (...) [Обработка Navcam] Для полета 21 (375-й сол) точки привязки широкоугольной камеры Ingenuity были измерены автоматически на основе характерных особенностей рельефа. Контрольные точки (по 10 на каждый полет) контролировались вручную одновременно на ортоизображениях HiRISE и изображениях с камеры Ingenuity. Точность определения контрольных точек в пространстве была принята равной 0,5 м. (...) На основе полученных точных данных о положении и ориентации Ingenuity была выполнена автоматическая стереообработка и получен высокодетализированный ЦМР для участка земли шириной 20-32 м. [Результаты] Из исходных изображений и полученной в результате ЦМР были созданы высокодетализированные ортомозаики маршрутов полетов. В процессе создания мозаики были удалены такие артефакты, как тени от вертолета, контрастные пятна и дефекты изображения. Размер ЦМР и мозаики в пикселях на поверхности составляет 3,8 см. Фактическое разрешение мозаики определяется угловым разрешением камеры и высотой полета. При типичной высоте полета 10 м исходный пиксель составляет около 3,8 см в плане (в середине полосы изображения) и постепенно уменьшается от нижней точки к краям полосы. Фактическое пространственное разрешение ЦМР несколько хуже. (...) Тем не менее, технология обработки данных Ingenuity обеспечивает фактическое разрешение изображений и топографических данных на порядок выше, чем у камеры HiRISE с орбиты. (...) [Обсуждение] Полная ортофотомозаика, а также высокодетализированная ЦМР будут доступны широкой публике в 2025 году".
* HiRISE (High Resolution Imaging Science Experiment) - камера на борту аппарата Mars Reconnaissance Orbiter, который находится на орбите и изучает Марс с 2006 года.
- М. Охтаке и др. Цели, инструменты и оперативный план миссии по полярному исследованию Луны, совместно запланированной Индией и Японией (M. Ohtake et al., Objectives, Instruments and Operation Plan of the Lunar Polar Exploration Mission Jointly Planned by India and Japan) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 1918 в pdf - 695 кб
"[Введение] Многочисленные данные дистанционного зондирования, полученные в ходе недавних миссий по исследованию Луны, свидетельствуют о том, что водяной лед может широко присутствовать в полярной области Луны. (...) в настоящее время фактическое происхождение, численность, механизм конденсации, а также поперечное и вертикальное распределение воды остаются неясными, поскольку ни одна миссия по посадке и ни один объект на месте не проводили измерения на широте выше 85°. (...) Помимо научного интереса, растет интерес к использованию водяного льда в качестве природного ресурса. В частности, использование водяного льда в качестве топлива окажет значительное влияние на будущие сценарии исследований и мероприятия, поскольку топливо, получаемое из воды, может быть использовано для подъема с поверхности Луны и может уменьшить массу запускаемых космических аппаратов при посадке на Луну. Чтобы оценить обилие и распределение воды в полярном регионе Луны, Японское агентство аэрокосмических исследований (JAXA) в сотрудничестве с Индийской организацией космических исследований (ISRO) планирует миссию по исследованию полярной зоны Луны (LUPEX). [Цель миссии] Цель этой миссии - получить информацию о количестве, распределении и механизме конденсации воды в полярной области Луны, чтобы оценить возможность использования воды в качестве ресурса в будущих миссиях (в таблице 1 описаны планируемые инструменты). Кроме того, мы также собираемся измерить химический состав и содержание других летучих веществ, чтобы оценить необходимый процесс очистки и энергию для извлечения воды для использования в качестве ресурса. Для достижения этих целей мы планируем совершить посадку на поверхность Луны в полярной области (широта выше 80°) и непосредственно измерить и оценить наличие воды, проведя измерения на месте. Мы собираемся провести измерения, чтобы узнать его количество (в каком количестве), качество (содержание других фаз, таких как CO2 и CH4) и удобство использования (насколько глубоко нам нужно бурить или сколько энергии требуется для бурения реголита с целью извлечения воды), чтобы оценить, можно ли его использовать в качестве ресурса. (...) [Конфигурация миссии] В рамках этой миссии ISRO и JAXA планируют разработать посадочный модуль и луноход, соответственно. Вес лунохода составляет около 350 кг (включая полезную нагрузку), и на нем будет установлено множество приборов, разработанных JAXA и ISRO. Луноход может бурить поверхностный реголит на глубину до 1,5 м, извлекать образцы реголита с глубины и передавать их на приборы. Луноход предназначен для перемещения и проведения измерений в затененной области в течение короткого периода времени. Самая большая проблема с точки зрения технологии заключается в том, как исследовать обширную область, постоянно находящуюся в тени (...) [Статус] В настоящее время проводится оценка и валидация конструкции лунохода в различных тестовых условиях с использованием инженерных моделей (EMs). (...) Серия EM-тестов продлится до конца февраля 2025 года. [Операция] Общая продолжительность миссии, по оценкам, составит более 3,5 месяцев после приземления на поверхность Луны, исходя из текущего плана операции. После приземления на лунную поверхность, развертывания и проверки системы луноход начнет тщательное наблюдение за заранее определенным исследовательским районом (...) На основе данных тщательного наблюдения будет определена область, где может находиться водяной лед, а затем будет выбрано место для бурения, которое будет проводиться в течение нескольких часов. После бурения образец реголита, взятый с глубины, помещается в контейнер для отбора проб. (...) Затем будет проведен анализ добытого газа (...) для определения его химического состава и содержания воды."
- Лешек Чеховски. Энергетические проблемы терраформирования Марса (Leszek Czechowski, Energy Problems of Terraforming Mars) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 1858 в pdf - 1,41 Мб
"[Введение] Значительная колонизация [Марса] все еще далека от научных экспедиций нескольких человек. (...) Это подводит нас к идее терраформирования Марса. Здесь мы рассматриваем варианты терраформирования, которые позволили бы людям жить без скафандров. [Атмосфера Марса] На Земле среднее атмосферное давление составляет 101,3 кПа (на уровне моря). Однако среднее атмосферное давление на Марсе колеблется от 72 Па на вершине горы Олимп (самой высокой горы Марса) до 1,16 кПа у подножия Элладской равнины (самой низкой низменности Марса). Таким образом, плато Эллада может считаться естественным домом для колонистов на Марсе. (...) Текущая масса атмосферы Марса составляет 2,5 х 1016 кг. Давление пропорционально массе атмосферы. Мы рассматриваем варианты терраформирования, описанные в таблице 1. Параметр C означает, во сколько раз мы должны увеличить массу атмосферы, чтобы получить данный вариант. (...) [Возможные источники летучих веществ] Для терраформирования мы должны импортировать нужные элементы. (...) В предлагаемых здесь планах терраформирования мы предполагаем промежуточный этап, на котором (после того, как на Марс будет доставлено достаточное количество вышеуказанных соединений) специально выведенные (или генетически модифицированные) организмы будут выделять кислород из H2O и CO2. Источником энергии для этих процессов будет солнечная энергия. Есть три места, где достаточно тел для терраформирования: главный пояс астероидов (MB), пояс Койпера (KB) и облако Оорта (OC). (...) Однако в телах MB значительно меньше легких элементов. Поэтому MB не является для нас хорошим источником материала. (...) На самом деле, одного тела [из KB] диаметром более 100 км было бы достаточно (...) Химический состав [тел в OC] соответствует нашим целям, но проблема заключается в большом расстоянии от Солнца. (...) [Транспортировка тел] Простой способ транспортировки тела из отдаленных регионов США заключается в снижении его скорости почти до нуля (в расчетах мы предполагаем снижение до нуля). Затем тело начнет падать по направлению к Солнцу. Время падения и скорость тела (объекта столкновения), когда оно достигнет орбиты Марса, приведены в таблице 2. Важным результатом является время падения. Для КВ оно составляет от 29 до 63 лет, а для ОС - более 15 000 лет. Для планирования и реализации инвестиций допустима временная шкала в несколько десятков лет. Однако время в 15 000 лет превышает возможные масштабы. Поэтому для терраформирования мы должны использовать тела KB. Чтобы изменить скорость, необходимо использовать ракетные двигатели. В таблице 2 показан расход топлива (...) Конечно, химический двигатель требует огромного количества топлива и окислителя. Ионный двигатель потребовал бы гораздо меньшего количества рабочей жидкости, но для его приведения в действие потребовалась бы силовая установка. [Гравитационный ассистент] Изменение скорости (...) предполагает, что основная энергия для изменения орбиты будет получена за счет гравитационного ассистента. (...) В КВ есть несколько тел значительных размеров, и на пути к Марсу можно использовать гравитационное поле больших планет. (...) Однако гравитационная поддержка в нашем случае сопряжена со значительной опасностью. (...) Также стоит использовать гравитационную поддержку, чтобы уменьшить относительную скорость Марса и объекта столкновения в момент столкновения. Это важно, поскольку сильное нагревание атмосферы приведет к выбросу газов из атмосферы. Более того, мощное воздействие на поверхность Марса может привести к трещинам в литосфере, землетрясениям и вулканизму. (...) [Нарушение приливных процессов] (...) Результаты наших расчетов указывают на существенные проблемы. Эффект гравитационного усиления часто зависит от неустойчивого поведения летучих веществ или от низкой силы сцепления тел KB. [Выводы] Создание атмосферы, которая позволила бы существовать человеку, возможно путем импорта вещества с других небесных тел. Необходимое количество энергии, необходимое для реализации проекта, сопоставимо с текущим потреблением энергии человечеством в течение от нескольких месяцев до нескольких лет, в зависимости от выбранного варианта терраформирования. Из-за огромного количества необходимой энергии наиболее подходящей представляется энергетическая установка на базе термоядерного реактора (работающего на местном водороде) и ионного двигателя. Однако могут возникнуть проблемы с использованием гравитационного ассистента."
- А. А. Саймон и др., Программа "Наследие Хаббла" по изучению атмосфер внешних планет (OPAL): 10 лет мониторинга планет-гигантов (A. A. Simon et al., The Hubble Outer Planet Atmospheres Legacy (OPAL) Program: 10 years of giant planet monitoring) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 1188 в pdf - 792 кб
"[Введение] Программа изучения атмосфер внешних планет (OPAL) началась в 2014 году в рамках инициативы "Наследие Хаббла-2020". Эти наблюдения должны были закрепить многолетнее наследие "Хаббла", состоящее из ценных данных, обеспечив регулярность наблюдений за планетами-гигантами, чтобы заполнить временные промежутки между отдельными программами. Поскольку атмосферы этих планет отличаются высокой динамичностью, долгосрочные тенденции, связанные с сезонными или другими эволюционными циклами, не могут быть определены без регулярного сбора данных с использованием одних и тех же инструментов и фильтров. (...) [Юпитер] Высокое пространственное разрешение телескопа Хаббл и глобальный и временной охват OPAL позволяют детально изучить долгоживущие вихри Юпитера, высокоскоростные узкие струи ветра и чередующиеся полосы цветных облаков. Результаты OPAL включали в себя изучение Большого Красного пятна, зональных скоростей ветра, небольших атмосферных волн, долгосрочных цветовых тенденций и многое другое. [Сатурн] Наблюдения Сатурна начались в 2018 году после завершения работы Cassini. Когда Сатурн впервые был осмотрен, он удалялся от точки летнего солнцестояния, и почти сразу же было замечено, что облачные полосы быстро меняют цвет, как и известный северный полярный шестиугольник. Несмотря на то, что в центре внимания OPAL находится атмосфера, в период с 2021 по 2024 год по счастливой случайности наблюдались кольцевые спицы. [Уран] Впервые был осмотрен в 2014 году, и у нас самый большой объем данных по Урану. За время существования OPAL полярная дымка значительно прояснилась. (...) [Нептун] Первые снимки Нептуна, сделанные в 2015 году, сразу же преподнесли сюрприз: небольшое темное пятно. В то время как это пятно исчезло, в 2018 году образовалось новое, сравнимое по размерам с Большим темным пятном, обнаруженным "Вояджером". Продолжающиеся съемки показали, что это новое пятно эволюционировало и в конечном итоге исчезло, несмотря на то, что яркие облака появлялись и исчезали с течением времени. [Краткое описание] Приведенные здесь результаты являются небольшой частью результатов, полученных благодаря мониторингу внешних планет OPAL. По состоянию на январь 2025 года данные OPAL были опубликованы в 62 статьях."
- О'Хара. Как человек, стоящий на поверхности Титана (W. J. O'Hara, As a Human Standing on the Surface of Titan) (на англ.) 56th Lunar and Planetary Science Conference, The Woodlands, Texas, March 10-14, 2025, Abstract no. 2255 в pdf - 147 кб
"[Введение] Титан является логичным вариантом в качестве следующего пункта назначения после Марса и при условии применения этого подхода к исследованию человеком. Однако Титан сильно отличается от Луны или Марса. Его поверхность пропитана жидким этаном и метаном. Солнечный свет, достигающий ее, составляет сотую долю от того, что мы получаем на Земле и Луне. Мы должны спросить себя, каково было бы физически человеку находиться на его поверхности? Описанная здесь работа объединяет наши знания о Титане (...), чтобы учесть факторы окружающей среды, которые могут повлиять на человека, такие как температура поверхности, плотность воздуха, текстура грунта, ветер, гравитация и освещение. Результатом стало первое подробное описание того, каково было бы человеку находиться на поверхности Титана. Эта информация дает представление о конструкции скафандра для выхода в открытый космос (EVA), проектировании среды обитания на поверхности и выявлении опасностей при выполнении миссии. [Справочная информация] За пределами научно-фантастических романов концепция путешествия людей на Титан рассматривалась в основном лишь вскользь и в основном в новостных статьях (...) Недавно созданная некоммерческая профессиональная организация "Исследуй Титан, Инк." стремится расширить тему путем совместного обсуждения между научными и сообщества людей, совершающих космические полеты, а также посредством информационно-просветительской работы. [Подход] Это исследование проводится с помощью сбора и интеграции данных и программного моделирования. Цель состоит в том, чтобы создать виртуальное представление о поверхности Титана, которое человек мог бы ощутить на поверхности, включая органы зрения, обоняния, осязания и слуха. (...) Было определено, что необходима дополнительная информация, чтобы полностью ответить на вопросы о том, что органы чувств человека будут воспринимать на Титане. В частности, в течение дня и года на Титане человек, находящийся в разных местах планеты, будет испытывать различные условия освещения. Мы стремились заполнить пробелы в нашем понимании этих условий освещения с помощью доступных инструментов моделирования солнечной системы. (...) Поскольку сатурнианская система наклонена к эклиптике на 25°, люди на поверхности планеты будут испытывать сезонные изменения в освещении, которые зависят от широты и долготы. Кроме того, учитывая приливно-отливную конфигурацию Титана, аналогичную земной Луне, одна сторона Титана выиграет от отраженного света Сатурна, в то время как другая сторона - нет. Все эти факторы будут влиять на уровень освещенности, который будет ощущаться человеком в течение суточного цикла. (...) [Преимущества и последующие шаги] Полученные результаты послужат основой для будущей работы, включая разработку наземных скафандров EVA (...), проектирование среды обитания, моделирование виртуальной реальности и наземные аналоговые исследования. Следующие шаги будут заключаться в том, чтобы извлечь из этой работы экологические требования и потенциальные опасности, на которые необходимо обратить внимание. (...) [Резюме] Путем обобщения данных, дополненных программным моделированием Солнечной системы, в этом исследовании оценивается опыт человека, исследующего Титан, вероятный пункт назначения в будущем после Марса. Эта работа является продолжением усилий по дальнейшему совершенствованию концепций полетов человека вглубь нашей Солнечной системы в соответствии с планами НАСА".
Интернет статьи 2000 — 2012 гг.
Статьи в иностраных журналах, январь 2025 г.