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Overview Objective B Objective C

The 2020 Emirates Mars Mission (EMM) is focused on understanding the patterns of mass and
energy transport within the Martian atmosphere and the processes that drive them, both laterally Characterize the state of the Martian lower atmosphere on global Correlate rates of thermal and photochemical atmospheric Characterize the spatial structure and variability of key

and vertically, and how they influence rates of atmospheric escape. EMM has three separate scales and its geographic, diurnal and seasonal variability. escape with conditions in the collisional Martian atmosphere. constituents in the Martian exosphere.
science objectives, addressed using synoptic observations in the visible, infrared and ultraviolet.

The EMM science team has identified several science analyses necessary to achieve our objectives. . . s . Correlat ditions in the lower and " C . £ EMUS derived densiti +h model
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and across diurnal, sub-seasonal, and seasonal temporal scales. Objective B is to correlate rates of " snapshot of the global atmosphere (every ~10 days) atmosphere simultaneously. *’ predictions
thermal and photochemical escape with conditions in the collisional Martian atmosphere. Objective : ol eT—
C is to characterize the spatial structure and variability of hydrogen and oxygen in the Martian . —— Surface Temperature + Determine the likelinood that a fower ' Modeled H escape rate » Models predict radial, latitudinal, and SZA variability
. e cciontif | N ) ot , oo R ; Trends will be easily identified and - e atmospheric quantity (e.9. %, 7, L and of O and H exospheres.
exosphere. I'he scientific analyses to address t ese o Jectlves.reqmre a taillored com m.atlon O visualized with JMARS. H,0, 0,) cpvarles \_/Vlth an upper « Models may not include all relevant sources or
EMM and non-EMM data products, data analysis tools and physics-based models. Only with these z, 7., T and H,0, 0, abundances with atmospheric quantity (e.g. exobase H accurately capture asymmetries
. . . . . .. ice’ “dustr ) : .. : :
unique combinations of data and models will we understand the physical processes driving respect to: density or T, O/CO mixing ratios). e The following EMUS observations will be used to
atmospheric structure, dynamics, the connections between the lower and upper atmospheres, and e Latitude ) i(ﬁut%r:Ist;er;)enIec?cdapigazégis(gr:t:gige\?:ri:il/v?{h create 3-D representations of O, H densities and
how these connections intluence atmospheric escape. ° Lor.lgitude some time lag and/or spatial shift or spread. Chaffin et al., 2017 B?S;Z?;ES dhlaimese SloliEvealiaecitiona Seuices anc SR
. = — : AltltUd_e (for temperature only) Cross-correlation analysis will be applied. . 0S.2 images of the inner O corona = N
Emirates Mars Mission Instruments Mission Plan * Local time  Strong correlations will suggest a physical link between quantities, and can be e 0S-3 asterisk-shaped observations of H corona.
e Season 6 compared with future EMM observations, previous and future spacecraft » 0S-4 radial profiles of O and H out to 11 Ry«
Mars Rkt Patse Betdoi S measurements, and theoretical models to facilitate interpretation. Lee et al., 2015
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- ves)| EXI EMIRS : : : P : Photochemical escape rates of O _
220 nm |9 pum « Particles escaping via photochemical and depend on the relative altitudes of « Knowledge of sources of hot O and H are necessary to fit models of O and
Tdust thermal processes acquire their energy in the thermospheric neutrals and O,* ions H escape to EMUS-derived density profiles of same.
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May 2021 1. Dust storm effects on -
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Quantitative comparisons: - Dust storms deplete O in the C.ll| comparison of derived escape rates to model predictions
SN Instrument Data Products: I * with models reveal physical processes Jemperatisan wing: i thermosphere, altering the relative .
EMIRS, EXI, EMUS . : . , - - - -
 with other data sets (e.g. TGO NOMAD/ o production of O,* and CO,*, which Quantitative comparisons between derived escape rates and

Supporting ACS, MRO MCS/MARCI) enables and

Data Not

cause escape through dissociative model predictions reveal physical process Is important for

Required reveals interannual variability recombination. understanding and simulating how escape rates may have
changed over Martian history.
MRO MCS Temperature structure at Ls = 270° 2. Solar Flare effects on September 2017 average g 4
' escape rates ~ standard deviatioh Global Oxygen Escape Rate ~—QO (10425 s-1)(this) 1%
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3D Oxygen Photochemical escape model

2.1.1 ice optical depth at 320 nm

2.1.2 ice optical depth at 12 um

2.2.1 dust optical depth at 220 nm

EUV irradiance at Mars (estimate)
MAVEN Particle and fields data

1D Atmospheric photochemistry model
Thermospheric H, O production models
ENLIL Space Weather Model

1.1Temperature profiles

1.2 Surface Temperature

2.2.2 dust optical depth at 9 um

2.3 Ozone column abundance

2.4 H,0 column abundance

Visible Images of Mars

3.1 Thermospheric O, CO column

4.1 Density of Hydrogen Corona

4.2 Density of Oxygen Corona

MRO Mars Climate Sounder Data

TGO Solar Occultation Data

JMARS Visualization tool

GCM simulation database

Data Assimilation Model

3D Hydrogen Jeans Escape Model
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Science Closure Analyses

Characterize the state of the Martian lower atmosphere on global
scales and its geographic, diurnal and seasonal variability.

Create combined multi-dimensional snapshot of the global o N B I v e
atmosphere every 10 days

Compare products of similar quantltles between EXI and EMIRS v v v v
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3. CME/SEP effects on escape rates

Fig. 8. Variation of the total Jeans escape flux of H and H, with solar longitude for
minimum solar conditions (blue lines), mean solar conditions (green lines), and
maximum solar conditions (red lines). The analytical fits presented in Appendix B
are represented by the thin solid lines. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

A, IV Meteorological Data Assimilation

CME events can provide and

Y ey i sl e prec:||c_)|tat|on Global models of photochemical O escape predict a wide Models of H escape flux variation based

iv | Meteorological Data Assimilation | AR h | of imilati . O - of solar and planetary ions JFO range of escape rates with respect to solar EUV flux. on lower atmosphere simulations can
Correlate rates of thermal and photochemical atmospheric escape o—lhe goa 0 data assimilation Is to | - the Upper atmOSphere, causing Definitive O escape rates from EMUS will narrow down reproduce the ~order of magnitude
with conditions in the collisional Martian atmosphere. efficiently combine all available » ‘ heating and chemistry changes. the range of appropriate models. seasonal variability of escape rates.
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