BICERONICS ELECTRO-ACOUSTICS

FEB. 1945

16

Vol. II. No. 1

IN THIS PRINCIPLES OF RADIOLOCATION

Letters to the Editor

Peacetime Uses for V2 • FM Protection Against High-Amplitude Interference Pulses • Bad Books

V2 for Ionosphere Research?

ONE of the most important branches of radio physics is ionospheric research and until now all our knowledge of conditions in the ionosphere has been deduced from transmission and echo experiments. One of the more modest claims of the British Interplanetary Society was that rockets could be used for very high altitude investigations and it will not have escaped your readers' notice that the German long-range rocket projectile known as V2 passes through the E layer on its way from the Continent. If it were fired vertically without westward deviation it could reach the F, and probably the F, layer.

The implications of this are obvious: we can now send instruments of all kinds into the ionosphere and by transmitting their readings back to ground stations obtain information which could not possibly be learned in any other way. Since the weight of instruments would only be a few pounds-as compared with V2's payload of 2,000 pounds-the rocket required would be quite a small one. Its probable take-off weight would be one or two tons, most of this being relatively cheap alcohol and liquid oxygen. A parachute device (besides being appreciated by the public!) would enable the rocket to be re-used.

This is an immediate post-war research project, but an even more interesting one lies a little farther ahead. A rocket which can reach a speed of 8 km/sec parallel to the earth's surface would continue to circle it for ever in a closed orbit; it would become an "artificial satellite." V2 can only reach a third of this speed under the most favourable conditions, but if its payload consisted of a small one-ton rocket, this upper component could reach the required velocity with a payload of about 100 pounds. It would thus be possible to have a hundredweight of instruments circling the earth perpetually outside the

limits of the atmosphere and broadcasting information as long as the batteries lasted. Since the rocket would be in brilliant sunlight for half the time, the operating period might be indefinitely prolonged by the use of thermocouples and photo-electric elements.

Both of these developments demand nothing new in the way of technical resources; the first and probably the second should come within the next five or ten years. However, I would like to close by mentioning a possibility of the more remote future—perhaps half a century ahead.

An "artificial satellite" at the correct distance from the earth would make one revolution every 24 hours; i.e., it would remain stationary above the same spot and would be within optical range of nearly half the earth's surface. Three repeater stations, 120 degrees apart in the correct orbit, could give television and microwave coverage to the entire planet. I'm afraid this isn't going to be of the slightest use to our post-war planners, but I think it is the ultimate solution to the problem.

> ARTHUR C. CLARKE, British Interplanetary Society.

Frequency Modulation

[X]HILE post-war plans for television and UHF sound broadcasting are under discussion, it is important that the pros and cons of FM should be understood. Space will not permit a full discussion here; but I wish correct a misconception, found even among responsible engineers, that FM can give no protection against ignition noise or other similar pulses which have an amplitude much greater than that of the signal carrier. The actual response of an FM receiver to very powerful impulsive interference can be summarised as follows:-

(1) In the absence of a signal,

the FM receiver gives no output from impulsive interference.

(2) In the presence of an unmodulated carrier to which the FM receiver is accurately tuned, the impulsive interference causes no audible output. If the receiver is not accurately tuned, there will be an audible output, but the amplitude of the pulses in the audio-frequency circuits of the receiver will correspond to a modulation of the carrier of less than 100 per cent., in fact to a modulation depth equal to the ratio of the frequency error in tuning to the frequency swing corresponding to full modulation of a frequency-modulated signal.

(3) In the presence of a frequency-modulated signal to which the receiver is accurately tuned, the audio-frequency noise pulses are limited to the *instantaneous* level of signal modulation. If the receiver is not accurately tuned, the amplitude of the audio-frequency pulses will be increased by the amount defined in (2) above.

If it is true, as sometimes suggested, that ignition noise is the chief trouble in UHF broadcasting, this summary provides a basis for the comparison of FM with other systems, such as wideband AM with audio-frequency limiting.

D. A. BELL.

London, N.21.

" New Thoughts on Contrast Expansion"

EXPEDIENCY be damned. My condemnation of contrast expansion was not based upon noise and neighbour tolerances. John B. Rudkin (your January issue) says "condemn the Philadelphia Orchestra because it is too large to play in the village hall." The truth is that anyone who asks it to do so should be condemned. and those who try to get the B.B.C. Orchestra into their bedroom are committing a crime. If the room is small, acoustically small, then only a limited contrast is proper, and all music