

missiles and rockets

MAGAZINE OF WORLD ASTRONAUTICS

ansistor/Tube Controversy		21
reamlined Titan Testing		23
hio Tracking Station		29


High temperature hydraulics

In 1943 Hydro-Aire built its first hydraulic valve. More than 100,000 valves and controls have since followed this initial contribution to airborne hydraulic systems. Put them all together and they could well handle the output of an active volcano.

Today's requirements for high temperature, high flow and high pressure hydraulic controls call for new ingenuity and new capabilities. To meet this demand, Hydro-Aire has combined its experience in high temperature pneumatic controls and high flow fuel system controls with its considerable experience in hydraulics. The result: a unique combination of capabilities and manufacturing know-how to meet the need for complex miniaturized hydraulic controls that will function with fluid temperatures of 450°F, 700°F ambient temperature, and under pressures in the 4,000-5,000 PSI range.

Producing Controls for Every Basic Airborne System

MISSILE HARDWARE by NEWBROOK

Specializing in

- MOTOR CASES
 Solid and Liquid Propellants
- JATO CASES
- NOZZLES
- PLENUM CHAMBERS
- BLAST TUBES
- FUEL INJECTORS

We have the "KNOW-HOW"

We have developed new techniques, new methods, new processes that effect production economy so necessary to a successful missile program.

Here at Newbrook you will find men with experience gained from doing... a modern plant with upto-date equipment...precision inspection to meet your most exacting quality control requirements.

And most important, Newbrook specialization results in strict reliability! Let us help you with your Missile Hardware problems.

Finest Welding Facilities Certified Welders



Machining Nazzles

X-Ray Inspection

Below: Machining Motor Cases

45 MECHANIC ST.

PHONE 45

SILVER CREEK, N. Y.

Executive Editor ... CLARKE NEWLON

Managing Editor ... DONALD E. PERRY

EDITORIAL STAFF

Military & Defense ... WILLIAM O. MILLER
Electronics Engineering ... CHARLES LAFOND

Missile Manufacturing ... WILLIAM E. HOWARD

Congress & Government ... E. M. KARE

Missile Business ... REED BUNDY

ARPA & NASA ... PAUL MEANS

LOS Angeles ... FRED HUNTER

FRICHARD VAN OSTEN

FRANK MCGUIRE

LONDON ... K. W. GARLAND

O. V. E. THOMPSON

Paris ... G. V. E. THOMPSON

Paris ... JEAN-MARIE RICHE

Geneva ... ANTHONY VANDYK

Art Director ... WILLIAM MARTIN

CONTRIBUTORS

Propulsion Engineering MICHAEL LORENZO
Industry JAMES J. HAGGERTY, JR.
Sopiet Affairs DR. ALBERT PARRY
Space Medicine DR. HUBERTUS STRUGHOLD
Astrophysics DR. I. M. LEVIT
Research HAYWARD CANNEY, JR.

ADVISORY BOARD

DR. WERNHER VON BRAUN
DR. PETER CASTRUCCIO
DR. ARTHUR KANTROWITZ
KRAFPT EHRICKE
DR. EUGEN SAENGER
R. F. GOMPERTZ

R. LEKANDER SAEN

BUSINESS STAFF

Assistant Publisher E. D. MUHLFELD
Advertising Sales Manager W. E. Brown
Circulation Director L. L. Brettiner
Promotion Manager S. A. Rymas
Research Manager D. T. Fossen
Advtg. Service Manager Mrs. G. Bussell
Production Manager John Walen
Ass't Production Mgr. ELSIE Gray

 New_York
 17 East 48 Street

 Eastern Advtg. Mgr.
 PAUL B. KINNEY

 Detroit
 201 Stephenson Bldg.

 KENNETH J. WELLS
 Chicago

 139 N. Clark St.
 GEORGE F. YONAN

 LOS Angeles
 8929 Wilshire Blvd.

 JAMES A. CLARR
 C. R. MARTE, JR.

 C. R. MARTE, JR.
 C. R. MARTE, JR.

 Miami
 208 Almeria Avenue

 RICHARD C. HAGER

 Toronto
 .12 Richmond St. E.

 ALLIN ASSOCIATES

 London
 .28 Bruton St.

 Noratl & Harr

m/r Volume 5 Number 11

Published each Monday by American Aviation Publications, Inc., 1001 Vermont Ave., N.W., Washington 5, D.C.

Printed at the Telegraph Press, Harrisburg, Pa. Second class postage paid at Washington, D.C., and at additional mailing offices. Copyright 1959, American Aviation Publications, Inc.

Subscription rates: U.S., Canada and Postal Union Nations—I year, \$8.00; 2 years, \$12.00; 3 years, \$14.00. Foreign—I year, \$20.00; 2 years, \$30.00; 3 years, \$40.00. Single copy rate—\$.75. Subscriptions are solicited only from persons with identifiable commercial or professional interests in missiles and rockets. Subscription orders and changes of address should be referred to Circulation Fulfillment Mgr., m/r, 1001 Vermont Ave., Washington 5, D.C. Please allow 4 weeks for change to become effective and enclose recent address label if possible.

missiles and rockets

MARCH 16 HEADLINES Transistors vs. Tubes Arbitrary military design specifications are jeopardizing security of the nation Surplus Property Disposal Affecting Missile Industry The yearly value of property disposed of hits \$5.6 billion **ASTRONAUTICS ENGINEERING** Paraffin-Lead Shielding Has Space Vehicle Application 34 Spraying Technique May Cut Radome Costs Gladding, McBean process aims at doing away with precision grinding MISSILE ELECTRONICS Sohio Tracking Station Providing Wealth of Data Simplicity of equipment allows results to be obtained rapidly . . 29 MISSILE SUPPORT EQUIPMENT Titan Testing Time May Be One Half Atlas' SAC personnel to join Martin's streamlined division in September. static firings may be eliminated at Cape Canaveral **DEPARTMENTS** Editorial 11 Missile Business 39

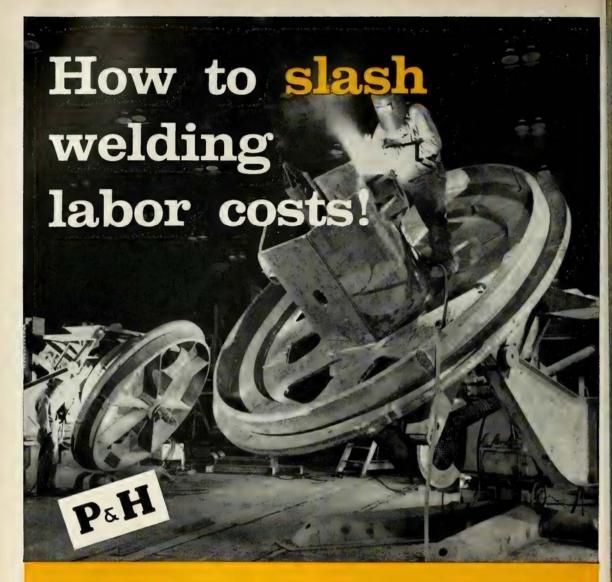
Contract Awards 42

When and Where 44

COVER: Alloys for *Atlas* are formed with Bath Company's "skin-stretching" machine. (p. 24)

FIRST stage of *Titan* moves on North American transtainer for test at Cape. (p. 22)

SOHIO'S tracking station is getting valuable data with simplified equipment. (p. 29)


BEING used in a nuclear reactor is paraffin-lead which has future application for space vehicles. (p. 34)

RADOME costs may be reduced by new spraying technique of Gladding, McBean & Co. (p. 37)

Washington Countdown ... 13

Industry Countdown 17

Mechanize your weldment handling with P&H Welding Positioners

P&H Welding Positioners can often cut labor costs in half by providing faster, safer, mechanized weldment handling. With these modern machines, operators merely press a button to quickly spot the work so that all welds are made downhand — in the natural position.

Downhand welding pools more evenly, permits the use of larger, "hotter" rods — frequently cuts the number of passes from 3 to 1.

As a result, you get more arc-time plus better welds. Your weldors turn out more work each day and like it — they don't have to work in cramped, awkward positions that reduce

efficiency. You eliminate waiting for cranes, and the use of extra helpers for repeated repositioning.

These money-saving machines are available from P&H with full 360° table rotation, 135° tilt, and power elevation even under capacity loads. (500 to 100,000 pound capacities.) Write today for "What You Should Know About Welding Positioners." Address Dept. 305M, Harnischieger Corp., Milwaukee 46, Wisconsin.

HARNISCHFEGER

Pat WELDERS . ELECTRODES . POSITIONERS

CHECKMATE

in the face of enemy countermeasures

Air Defense is a chess game for keeps—a game in which our nation and the rest of the free world are the stakes. The strategy of the game anticipates enemy actions and countermeasures and provides for that extra measure of ability to win.

At Bendix, the capability to operate in the presence of enemy countermeasures is inherent in system design.

All types of countermeasures—deception, multiplejamming, and camouflage—are included in Bendix threat evaluation. The effectiveness of these countermeasures is investigated for advanced detection, raid resolution, tracking, and weapon control techniques.

Facing up to the sophisticated threat is the prime

objective of Bendix in air defense projects. The Systems Division, working cooperatively with the Radio Division, is engaged in programs involving passive techniques, electronic scanning, frequency diversity, data processing, anti-jam circuits, special radars, bistatic detection, and anti-submarine warfare.

Other projects for which the Bendix Systems Division has system management and engineering responsibility are the EAGLE air-to-air missile system, global weather reconnaissance, supersonic target drones, and radiation-resistant mission and traffic control. These programs and emphasis on counter-counter-measures exemplify Bendix Systems leadership.

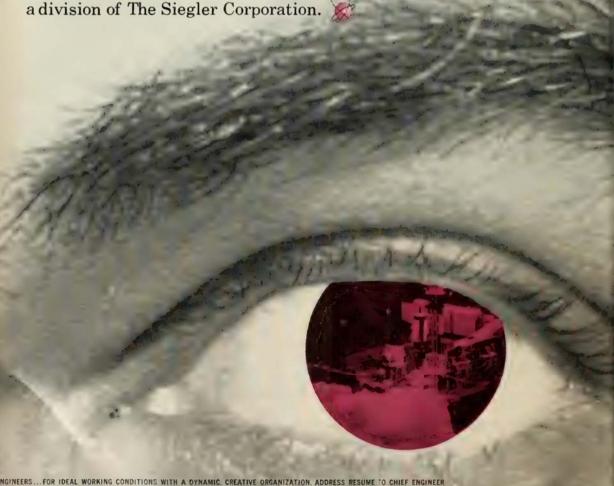
Bendix Systems Division

COMPLETE ELECTRONIC SYSTEMS massive MARTIN-DENVER "Titan" including pad safety monitoring

RESPONSIBILITY at the testing complex... and close firing obser-

vation (10" from engine blast) by closed circuit TV...has been a Hallamore project from conception. Design, manufacture, installation

of telemetry (over 900 racks) and CCTV and checkout


equipment systems), plus of Martin

(32 Hallamore environmentally protected thorough personnel, tions of this responsibility. The facilities, and products that assist

indoctrination are the funccapabilities. Martin in the

operation of one of the nation's most significant missile installations can be the answer to your systems requirements. Write Hallamore Electronics Company, 8352 Brookhurst, Anaheim, California. TWX: AH 9079...

LLAMORE

Electronics and Missiles ... every step of the way

Research — Preliminary Design — Development — Product Design — Test — Production

The entire missile system complex is encompassed by the Martin Orlando R&D and production facility. Naturally, Martin Orlando does not design and build every subsystem and component. But they are responsible for every facet of the program. For this reason Martin Orlando has developed a thoroughly integrated organization. Scientists for research in guidance, propulsion . . . engineers to give dimension to research . . . skilled technicians to implement programs . . . men with gray matter to create and build weapons for defense.

Gray matter is the priceless ingredient. The facility is there . . . the finest in the nation. The challenge is there . . . as limitless as your imagination. The men are there . . . men with sound purpose, working together. If you can contribute and grow in such an atmosphere, there is a place for you at Martin Orlando.

Openings exist for Electronic Engineers, Physicists and Electrical Engineers in the areas of ground support and airborne electronic systems, circuit design, computer design and guidance. Please send confidential resume to: J. F. Wallace, Director of Professional Staffing, The Martin Company, Orlando 14, Florida.

ARCTIC DEWLINE

TO TROPIC MISSILE RANGE

DRESSER-IDECO RADAR TOWERS

SERVE ON AMERICA'S FIRST LINE OF DEFENSE

Far into the frozen Arctic, radar towers built by Dresser-Ideco support radar antennas that guard our DEW Line frontier. Farther south, where warning lines stretch across the land and out into the sea on "Texas Towers," Dresser-Ideco structures serve the second and third lines of defense. And at the present time, Dresser-Ideco is developing missile guidance and tracking towers.

Defense equipment such as this is a natural outgrowth of Dresser-Ideco's background as the most experienced supplier of specially designed, fabricated metal structures. Dresser-Ideco, for example, has built more than half of the TV towers over 1000 feet high in this country, includ-

ing four of the tallest man-made structures in the world. For the Greater Pittsburgh Airport, Dresser-Ideco has built hangars with a clear span of 278 feet—one of the widest ever erected for three-hinged steel arches. In addition to building electric power substations, and commercial and industrial buildings, Dresser-Ideco has designed and built the first drive-through mechanical parking garage.

No job too complex, no structure too large... Dresser-Ideco engineers are prepared to take full responsibility to design, fabricate and erect the complete facility to meet civilian and military defense requirements.

DRESSER-IDECO IS ONE OF 14

DRESSER OPERATING COMPANIES

WHERE MEN WITH IMAGINATION

PLAN TOMORROW'S PROGRESS TODAY!

OIL • GAS CHEMICAL ELECTRONIC INDUSTRIAL

REPUBLIC NATIONAL BANK BLDG., DALLAS, TEXAS

Progress Report

Over the past year it has become more and more apparent that the Department of Defense, other agencies of the United States government and aircraft, missile and electronics manufacturers have been placing more and more emphasis upon the systems concept for weapons and space flight development.

In order to keep pace with the evolvement of this concept, and to remain a true industry medium for all those who design, develop, test, manufacture and operate missiles, rockets and space vehicles, and their supporting equipment, *Missiles and Rockets* has been gradually broadening its editorial scope with more and more attention to the systems approach and a consequent and necessary increase in the amount and caliber of technical editorial coverage.

Furthermore, while Missiles and Rockets will always believe it an obligation to champion any cause or program which will further the nation's defense and space development capabilities, Missiles and Rockets will scrupulously avoid the undue influence of any individual association, group or service.

Missiles and Rockets' current editorial expansion plan, now all but completed, is under the direct supervision of Clarke Newlon, who was appointed executive editor on September 2, 1958. It calls for a staff of 12 full time editors, 12 contributing and regional editors, 12 correspondents, and an eightman editorial advisory board.

Among the recent appointments by Mr. Newlon as full time editorial staff members are:

Charles LaFond, formerly Page Electric Co., electronics engineering.

Hal Gettings, formerly Radiation Inc., electronics and support equipment;

Allan D. Seltzer, formerly Redstone Arsenal Research and Development, chemical engineering and weapon systems;

William Hall, Washington Industrial Public Relations and formerly UPI—government agencies;

William Howard, formerly United Press International, missile and space industry;

James Baar, formerly United Press International, military and weapons systems.

Added as contributing staff members on a regular basis are: James J. Haggerty, Jr., authoritative

aero/space writer; and Michael Lorenzo, advisor to the U.S. Air Force on propulsion.

In its 30 months of publication since October, 1956, Missiles and Rockets has grown from a revolutionary idea on the horizon of the business publishing field to an extremely successful and vital weekly magazine. In 1958, among the some 2700 listed business publications of all types in the U. S., it ranked 63rd in advertising volume, a record possibly unmatched in all business publishing history. During the past several years it has scored time and again with exclusive news and technical reports in the missile and space flight fields; it has carried more editorial pages devoted to those subjects than any other magazine of any type.

Enthusiastic support from all phases of industry made it possible for M/R paid circulation to grow to 29,997 for the last issue of 1958, subject to ABC audit; it carried 1686 pages of advertising in its second full year of publication, far more than any other business publication covering the same market.

In a recession year when business publications as a group showed a 14% revenue loss, M/R showed a 58% gain over the previous year, the largest of any publication reporting to Industrial Marketing magazine. Revenue for the first two months of 1959 increased 43% over the same period of 1958.

In short, Missiles and Rockets has telescoped a normal business publication growth of some 20 years into a period one-tenth as long. It has pioneered a totally new concept of market coverage, causing a major revolution within its field. It has kept pace with a market which has grown from \$21 million to \$7 billion in just eight years.

As another major move to strengthen the organization behind Missiles and Rockets, Edward D. Muhlfeld, advertising sales manager since the magazine's founding, has been named Assistant Publisher with headquarters in Washington. Walton E. Brown, regional advertising manager in Los Angeles, has been named advertising sales manager with headquarters in New York. With editorial and advertising performance measured by the Eastman and Mills Shepard Research organizations, Missiles and Rockets will strive for a maturity calculated to provide for its readers a true industry medium deserving of its description, namely, the technical news weekly of the missile/space industries.

Wayne W. Parrish Publisher

- Lightweight . . . only 8.5 oz.
- Superior Linearity and Hysteresis Characteristics
- Two Stage . . . First Stage Separable Assembly
- Dry Coils
- Adjustable Nozzles
- 3.5 or 5 gpm Models at 3000 psi
- 8 ma Differential Current for Rated Flow
- Self-Cleaning Air Gaps
- Maximum Reliability
- Wire Mesh
- Easier Field Servicing

VICKERS SERVO VALVE

Designed primarily for aircraft and missile applications, the new Vickers Electro-Hydraulic Servo Valve has numerous features (see above) that assure optimum performance and dependability.

Porting modulated flow to linear or rotary actuators with respect to minute input current has been optimized within a small envelope and at a weight that is approximately 30% less than other valves of similar capacity. Design also provides for interchangeability with many existing servo valves now used in airborne applications. For further information, ask for technical bulletin number SE-98.

VICKERS INCORPORATED

DIVISION OF SPERRY RAND COLPORATION

Aero Hydraulics Division • Engineering, Sales and Service Offices:

ADMINISTRATIVE and ENGINEERING CENTER Department 1470 - Detroit 32, Michigan

TORRANCE, CALIFORNIA . 3201 Lomita Boulevard P.O. Box 2003 . Torrance, California

Aero Hydraulics Division District Sales and Service Offices . Albertson, Long Island, N.Y., 882 Willis Ave. Arlington, Texas, P.O. Box 213 . Seattle 4, Washington, 623 8th Ave. South . Washington 5, D.C., 624-7 Wyatt Bldg.

Additional Service Facilities at: Miami Springs, Fla., 641 De Soto Drive

TELEGRAMS: Vickers WUX Detroit, TELETYPE: "ROY" 1149 • CABLE: Videt
OVERSEAS REPRESENTATIVE: The Sperry Gyroscope Co., Ltd.—Great West Road, Brentford, Middx., England

Builders of Oil Hydraulic Equipment Since 1921

the missile week

washington countdown

Pioneer IV and Mechta . . .

comparison works out like this (Mechta in parentheses): Weight, 13.4 lb (796.5); moon miss, 37,000 miles (4,660); time tracked, 84 hours (62); distance tracked, 406,020 miles (370,000); perihelion, 91,744,000 miles (91,500,000); aphelion, 105,829,000 miles (123,250,000); velocity at perihelion, 69,500 mph (72,360); velocity at aphelion, 60,000 mph (54,360); time of orbit, 392 days (447).

DOD confirmed Discoverer I . . .

orbit (m/r, March 9, p. 20) after press deadline. Some 41 tracking reports were received verifying the orbit. Life expectancy is 30 days with apogee of 519 and perigee of 176 statute miles.

France's Saharian . . .

test range of Colomb-Bechar has started the first of 50 scientific rocket firings using *Veronique* and *Monica* birds. Under sponsorship of newly-created French Space Committee, rockets will explore at altitudes between 30 and 150 miles.

British missiles only . . .

interest the Australian Navy insofar as their surface units are concerned. While very interested in *Sidewinder* and other air-launched missiles, the Australians say problems of training personnel and acquiring experience with American guidance and support equipment give the advantage to Britishmade missiles. The Australians are reported considering several, including *Seaslug*.

In missile management . . .

investigation by House Military Operations Subcommittee, Assistant DOD Secretary Quarles came to the defense of the Institute for Defense Analyses (m/r, Jan. 5, p. 20). Quarles said IDA is limited to technical advice and has no power to select a specific contractor. IDA has 30 nongovernment staff members, he said, and operates on a non-profit basis.

Legislation to reinstate . . .

the excess profits tax of 1950 has been introduced by Sen. Richard L. Neuberger (D-Ore.). The bill would reimpose the tax for the taxable years beginning July 1, 1961.

Merger of Navy bureaus . . .

is again being rumored in Washington. Plan to merge the Bureau of Aeronautics and the Bureau of Ordnance into a Bureau of Weapons has been reported before. Navy would only say that no definite decision in the matter has been made.

Renegotiation Act probe . . .

will have to take a back seat, according to reports from the Hill, with discord over extension of unemployment compensation nosing the Renegotiation Bill out of first place on the agenda of the House Ways and Means Committee.

Renegotiation . . .

has been left out of a procurement bill introduced by Rep. William Bates (R-Mass.). That's its only real difference from a procurement bill introduced by Sen. Leverett Saltonstall (R-Mass.). Both bills would put negotiation on a par with advertised bidding and permit use of the technique termed "competitive negotiation." Another section would give specific authority and guidelines for use of the weapons system—redefined as "operational system."

Zeus production . . .

commitment is far from settled one way or the other with Congress hearing from Army R&D Chief Trudeau that it is "our only hope for the early 1960's." DOD's Holaday said he concurs at maintaining program at present R&D level but wants another \$40 million for engineering development work. JCOS have said they think Army money for air-to-surface missiles is "substantially below" recommended 1960 needs, and that AF needs more money for *Bomarc* procurement.

Supplemental FY 1959 . . .

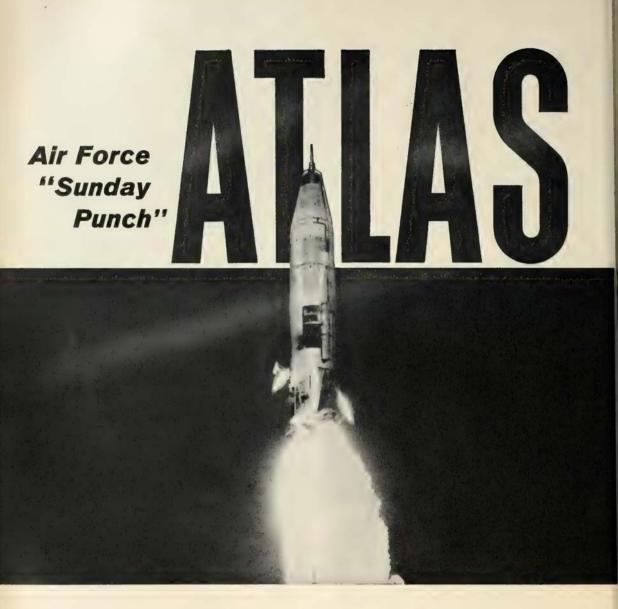
appropriation of \$48,350,000 has been approved by the Senate for NA\$A. Most is for R&D on *Project Mercury* (\$20,750,000) but there's \$24,250,000 for construction and equipment.

Thanks to the special materials and construction of improved Ketay synchros, the moisture-resistance standards of Mil Spec 20708 (superseding all previous specifications) can be met or exceeded.

Many of these special materials and design features are exclusive with Ketay... the only source currently manufacturing and shipping a wide range of the new Mil-type synchros.

Stainless steel housing, shafts, and bearings . . . stators potted in anti-fungus epoxy resin . . . hermetically sealed windings . . . thru-bore construction for fewer parts and less space where moisture can collect . . . these and a variety of other Ketay features all give extra protection against moisture damage.

For high performance and dependability, despite extremes of humidity and temperature, specify Ketay synchros and other precision components, available in production quantities in sizes from 8 to 23. Sixty cycles per second units are available as small as size 15. Units one or more sizes smaller and lighter than previously required can often be used, because of Ketay's superior accuracy. Units of 3' and 2' accuracy are available for immediate delivery. Ketay engineers are working with manufacturers whose prototype systems have unusual environmental and accuracy requirements. Call or write for help in solving your special problems.


Relay precision components: SYNCHROS RESOLVERS POTENTIOMETERS SERVO MOTORS TACHOMETERS SERVO AMPLIFIERS GYYOMECHANISMS Calalogues available

NORDEN '

Division of United Aircraft Corporation

KETAY DEPARTMENT, Commack, Long Island, N.Y.

Boosted into space by the fiery thrust of three huge rocket engines, the seven-story Atlas intercontinental ballistic missile roars upward from its Cape Canaveral launching pad. Quickly it sheds the frost encrusting the liquid oxygen tank and races to its predetermined destination in the far reaches of the globe. In its size and range and capability, the Air Force Atlas is a

commentary, for all the world to heed, of the necessity to maintain the peace. RCA's Missile and Surface Radar Department has been privileged to design and develop ground check-out, launch control and cabling equipment as a major subcontractor to Convair (Astronautics) Division of General Dynamics Corporation, the Atlas prime weapons systems contractor.

16

RADIO CORPORATION of AMERICA

DEFENSE ELECTRONIC PRODUCTS
CAMDEN, N. J.

the missile week

industry countdown

Decision on ALBM . . .

contractor will be made about April 15. Sixteen firms have put in proposals out of 20 called in. Earlier R&D feasibility studies (WS-199B, m/r Dec. 1, p. 11) were made by Martin, Lockheed-Convair and McDonnell. On the engine, all three want Thiokol. Martin's subcontract system would be Thiokol, General Precision Equipment Corp., Librascope, Inc., Kearfott Co., and Kollsman Instrument Corp., guidance.

30,000-pound solid . . .

booster for a manned space capsule is unofficially being pushed by Grand Central Rocket Co. Company says it would have less than 2 g's acceleration compared with 6 g's for Atlas. So far design is only on paper. Company also says it can put a four-stage solid propellant space vehicle on a launch pad within four years at a cost of \$70 million compared with \$102 million, which Grand Central says is needed for a 1.5-megaton single-chamber liquid booster.

Minuteman R&D propulsion . . .

contracts totaling \$162 million have gone to Aerojet and Thiokol. Latter's work under \$77 million contract will be at Brigham City, Utah. Aerojet-Azusa will research under \$85 million award. AF has anounced seventh site for ICBM near Lincoln AFB, that could be model for Minuteman, which may be accelerated by as much as six months, according to Lt. Gen. C. S. Irvine.

First X-15 glide test . . .

is due this week at Edwards AFB to be followed by powered flight. X-15 last week rode on a special pylon under right wing of modified B-52 for first captive flight test.

Major Polaris missile . . .

and submarine system contracts now total 440. Missile system contracts, including guidance account for 140, but some 4000 vendors are involved in the FBM program.

DOD will have . . .

available this week a study for the Labor Department to determine how much of the missile dollar goes to manufacturers of airframes, electronics and propulsion. While the Holaday report will not be exact, it should help to resolve the question of a redefinition of aircraft to include missiles and missile electronics. AIA wants the redefinition, EIA opposes it.

Convair has a "task force" . . .

studying use of Lobber as an antisubmarine weapon for depth charging or placing of sonobuoys and flares.

Air Force has biggest piece . . .

of the missile obligations for the six-month period ending Dec. 31. Breakdown for the first half of FY 1959 shows: Army, \$4.3 million; Navy, \$4.1 million; Air Force, \$1.45 billion, for a total of \$2.3 billion. Missile expenditures in December were \$2.8 million, for a six-month total of \$1.5 billion.

\$61.8 million contract . . .

has gone to McDonnell for F-4H-1 airplanes. They will be armed with *Sparrow III*, and will be partially recessed into the fuselage for supersonic flight.

Vanguard II's cloud cover . . .

instrumentation transmitted 250,-000 ft. of taped signals, but because of an unexpected precession of the satellite, it will take Army Signal Corps scientists months to decode the signals.

NASA's Scout will cost . . .

in the neighborhood of \$500,000 per vehicle. This is less than \$15 per pound for the total vehicle, and less than \$3,500 per pound orbited.

Solid propellant . . .

escape rocket contract for Mercury capsule has been awarded Grand Central Rocket Co. by McDonnell Aircraft, prime. It's the first NASA project to go to the Redlands R&D center.

HUNTER-KILLER

TEAM TRAINING

NTDC'S* ANTI-SUB TACTICS TRAINERS BY ERCO; AD-5N, P5M-1, S2F-1, ZSG-4,

P2V-5, P2V-7... AND NOW THE S2F-3,
PROVIDE INTEGRATED CREW TRAINING
FOR THE MEN SAFEGUARDING OUR
SHORE-LINES. THIS LATEST ERCO
7-MAN TEAM TRAINER SIMULATES ALL
ASPECTS OF ANTI-SUBMARINE

WARFARE FROM SEARCH, TO TRACK, TO KILL.

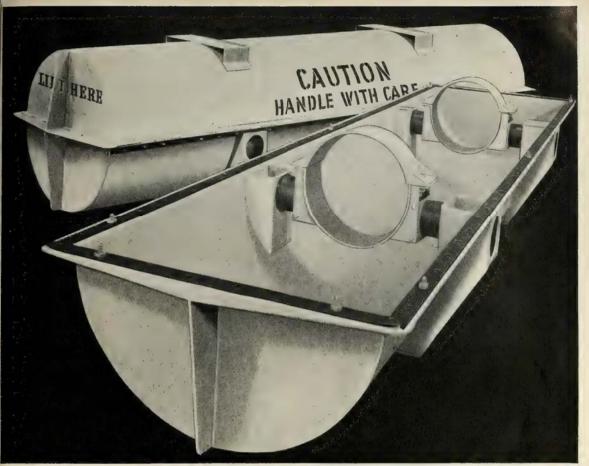
*NAVAL TRAINING DEVICE CENTER

ERCO TRAINING-TO FILL THE SUITS . . TO MAN THE PLANE.

- Man-machine task analysis (instructor and crew) maximum learning transfer.
- Automatic self-checking system—maximum utilization through minimum maintenance.
- · Complete environmental realism.
- Completely activated tactical equipment.
- · Largest magnitude simulator for team training.

NUCLEAR PRODUCTS—ERCO, DIVISION OF QCF INDUSTRIES, INC., RIVERDALE, MARYLAND

AMERICAN CAR AND FOUNDRY


AVIO

CARTER CARBURETO

SHIPPERS CAR LINE

W-K-M

W-K-M

Shipping and storage container for solid propulsion unit produced by the Thiokol Redstone Division.

METAL FABRICATION PROBLEMS?

better see Butler

Prime contractors and major sub-contractors in government missile programs find the fastest and most economical way to solve metal fabrication problems is to turn them over to Butler.

One of the largest fabricators of aluminum and steel with 7 strategically located plants, Butler has proven capability to design, engineer and deliver complex single units or volume production.

Butler is currently producing reusable metal shipping and storage containers for missiles and missile components, and also mobile fuel service units for the Redstone and Jupiter. Butler is participating in developing and producing the first shelters for Bomarc.

For a comprehensive picture of Butler's capabilities and facilities, write:

Water-alcohol fuel service unit for Redstone. Research, design testing and fabrication by Butler Contract Manufacture Division.

Butler was prime contractor for designing, developing, fabricating and erecting prototype Model III Bomarc launching shelter.

BUTLER MANUFACTURING COMPANY

BUTLER CONTRACT MANUFACTURE DIVISION 7524 East 13th Street, Kansas City 26, Missouri

Manufacturers of Metal Buildings • Equipment for Farming, Dry Cleaning, Oil Production and Transportation, Outdoor Advertising
Factories at Kansas City, Missouri • Minneapolis, Minnesota • Galesburg, Illinois • Richmond, California • Birmingham, Alabama • Houston, Texas • Burlington, Ontario, Canade
missiles and rockets, March 16, 1959

NEW VOUGHT CRUSADER FOR FLEET NEXT YEAR!

Navy orders fourth version of flexible, economical fighter

For the fourth time in three years, a new *Crusader* type is extending the power of the Fleet. Chance Vought's F8U-2N has been ordered by the Navy for delivery next year. It will deploy alongside the Navy's swiftest photoplanes and two first line day fighters — all *Crusaders*.

The F8U-2N is another step in *Crusader* growth. Speed of this newest version has been advanced to near Mach 2. It will carry the deadliest air-to-air missiles. It is instrumented and radar-equipped for supersonic

combat in darkness or bad weather.

This will be a new capability for the Fleet. Yet it is being acquired at low risk and cost. The F8U-2N's basic design has been proved simple, serviceable and economical...compiling an enviable performance record in a year of foreign duty with two Fleets.

Again, the growth provisions of the Vought *Crusader* have provided immediate, low-cost upgrading of the Fleet's aircraft inventory.

MAGAZINE OF WORLD ASTRONAUTICS

Transistors vs. Tubes

... are arbitrary military design specifications jeopardizing U.S. security?

by Donald E. Perry

Washington—Arbitrary military design specifications which call for complete or nearly complete transistorization of missile electronic equipment are placing the nation's defense system in jeopardy, industry officials have told m/r

And if another nation should strike first with nuclear weapons, there is widespread doubt in the industry that this country could effectively retaliate, with many aircraft and missile systems said to be virtually useless.

Industry and the military are differing on the merits of the vacuum tube vs. the solid-state devices such as the transistor and diode. Industry's point is that not enough research is being carried out to determine if the highly touted transistor can survive and perform satisfactorily while going through fields of nuclear radiation.

And with suspension of atomic tests many scientists feel a conclusive decision has not and cannot yet be made in favor of either the tube or the solid-state device.

It's obvious that radiation causes changes in the physical and chemical nature of components traveling through such fields. U.S. research today is aimed at how much it changes, and most important, how it affects a particular missile or aircraft circuit.

• Stability lost—Present research, m/r has been told, indicates that transistors in high neutron fluxes are not stable because of physical changes in their nature. This particularly applies to the audio-type transistors. Research has shown, however, that the thin-based high-frequency transistors "suffer less" from radiation effects.

This has led many weapon systems designers to believe strongly that the action of a transistorized system entering a cloud of primary and secondary fission products would be completely unpredictable.

While industry agrees with the military that the use of transistors should be pushed because they are lighter, require less power, and generate less heat, industry believes it's to the detriment of the nation that military design specifications in many cases require complete transistorization of equipment.

• Services differ—What's being done? The Navy, m/r has been told, has adopted a radically new procedure which says, in effect, that in the Polaris program vacuum tubes and solid-state devices will be given an "equal shake."

The Air Force, on the other hand, is still insisting on solid-state devices in most design specifications, m/r has been told. One instance was cited involving automatic test equipment using only solid-state devices. The equipment still has not been demonstrated after three years of work.

Here are other cases reported to

• A Navy missile was partially transistorized to test the reliability of transistor usage. It reportedly required 40 transistors to replace five vacuum tubes in order to overcome the lower performance of the transistor units.

• A top designer of a company manufacturing autopilots for aircraft said he "shudders to think of using transistors in autopilots because they are so unstable." He said he must compromise his design to use transistors because he has no choice—the military is demanding transistorized units. He pointed out that there is a real danger to life and property involved because autopilots designed with tubes include fail-safe mechanisms whereas those using transistors normally do not.

 A recent military request for bids for design and development of a celestial body sensor had a preamble in which the contractor was directed to conduct a thorough background investigation to determine the most suitable materials and techniques for use in the sensor. But the fourth sub-specification contained these arbitrary directions: "The associated sensor electronics shall be completely transistorized."

• One large computer manufacturer reported it employs a print-out circuit which is served by a special high-voltage pulse tube. The tube is being used in the company's commercial versions of the circuit; however, military specifications require the use of transistors for this function. The company said its cost is \$6.50 more per stage by using transistors and totals several hundred dollars per printer.

• A mammoth military computing system built with transistors has been unable to operate satisfactorily for the past nine months because of transistor failures. Designed for vital defense information data processing, the system has suffered failure after failure and for all practical purposes has been completely inoperable.

• Wishful thinking?—In a recent symposium, a well-known designer presented a table of major factors for consideration in the design of transistorized equipment. He compared vacuum tube equipment with what he termed "wishful thinking" in transistor design goals. He cited, for example, that tubes are rated at 300 hours for reliability while transistors have a goal of 600 hours.

This same designer compared the maintenance time of the tube and the transistor version. He listed tube replacement time as 50 minutes and transistor replacement time as five minutes. However, he said that in designing the transistor equipment, indicator lights were used to point out which circuits had failed, thus saving much time looking for failure.

While many believe that transistors are just as reliable as tubes, industry observers object strenuously to comparing known facts about tubes with hopeful goals of transistors. To do so, they say, is "blue-sky" propaganda which is unduly and dangerously influencing military defense designs.

G. T. WILLEY... management leadership for field testing.

Titan's Testing Time May Be One Half Atlas'

SAC personnel to join Martin's streamlined test division in September; static firings may be eliminated at Cape.

by Donald E. Perry

CAPE CANAVERAL—Testing of the Air Force *Titan* should be shortened to one-half of the time required for *Atlas*, and the first SAC crews will be integrated into The Martin Company's Cocoa testing division as test conductors by September, m/r has learned.

The Air Force personnel will arrive during second and third lot testing (B and C series birds) and will include test conductors, lead engineers and technicians for electrical, mechanical, flight controls, missile safety and propulsion.

Static firings at the Cape will be eliminated for *Titan*, which should shorten the time for operational availability by months. Basis for this unprecedented action is the *Titan's* record of performing successfully on its first two flights and the Air Force's conviction that engineering and static tests in Denver are sufficiently advanced to place this much reliability in the missile.

The immediate goal is to fire a *Titan* within one week from its arrival at Patrick AFB via Douglas C-133. Already, the Martin-Cocoa division has chalked up some notable firsts and shown industry that it is neither desirable nor advantageous to regard a testing operation as a stepchild of the parent engineering group. The first test firing on Feb. 6 required a seven-hour countdown. The second firing on Feb. 25 shaved four hours off that time. To top it off, two completely different test crews have fired the bird, and another crew is scheduled to fire the next missile.

• The man behind it—The man back of this enviable record is softvoiced, British-born G. T. (Tom) Willey, senior Martin vice-president and general manager of the Cocoa Division, who continues to speak softly but wields a big management stick with force when he has to.

In October, 1957, Willey established shop at Cocoa Beach and promptly announced he was determined to give real management stature to field testing operations. At that time, there were 100 employees and there was not too much planning to strengthen test schedules for the Big T and Vanguard. Today there are 945 employees.

Martin's move is being copied by other prime contractors who have since announced full-scale strengthening of testing operations by creating separate management divisions.

The first step was to let a skeleton field force know he was on board. He used the standard industrial engineering approach: housekeeping and cleanliness of the operation—watch the coffee breaks, etc.—which affected employees personally.

• Tightening up—After this came a beefing up of the organization with key men transferred from Martin's other divisions. Testing schedules were worked out well in advance and Martin-Cocoa tightened up rules and regulations and refused to take "no" for an answer. The philosophy in effect was to tell the parent plants (Denver, Orlando, Baltimore), that "we can't hold up our testing operations because of you."

At this time, Vanguard was requiring about 300 modifications in the field. Willey resolved not to let that happen to Titan. "We did not want to become a major modification center for work which could have been done more effectively at the factory," he says. He proved it when it came to flight testing the first Titan.

An engine failure during FRF (flight readiness firing) brought one

big on-the-spot decision: ship it back to Denver. The division doesn't regret this decision. The vehicle was fired Feb. 25, and required less than 20 field modifications. Further, it backed Willey's theory: a testing operation should work hand-in-hand with the parent group but not be subservient.

While Willey is the first to admit that his division got the benefit of a

COMPLEXITY of *Titan's* ground port equipment is evident as a first s is moved on to Pad 15 at Cape Ca eral for erection.

lot of information from earlier Vanguard testing, a Cocoa Division system of coordinating engineering changes necessary in the field with the parent engineering group at Denver has paid dividends.

• Quick liaison—A Denver field office was set up at Cocoa to act as a liaison between the Cocoa Division and the Martin-Denver division. When a minor field modification is needed (changing wiring circuits, etc.), the Cocoa Division writes a Liaison Call Sheet (LCS) which says in effect it would be advantageous to the success of the bird presently on the stand if a modification were made as an interim measure.

Without having to await approval from Martin-Denver engineering, the minor mod is made with the concurrence of the Denver field office. Then, Cocoa engineers write a Field Change Authorization (FCA). This is sent to Denver immediately, and if Denver engineering concurs, that group issues a Drawing Change Notice (DCN), listing complete effectivity, thus changing engineering both at Denver and at Cocoa. The FCA takes about a day to jell between the two widely-separated operations.

This system has kept to a minimum

the number of modification kits sent from Denver. It has drastically reduced the time for missile checkout, Less than 10 changes—half the number required in the first bird—were made in the second test vehicle fired Feb. 25.

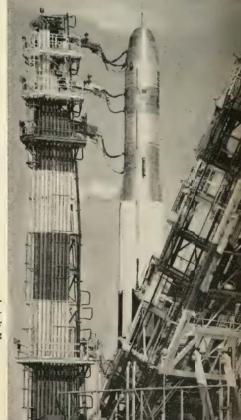
• Fingers crossed—Titan is a long way from its ultimate goal: capability of eight to 20 servicemen to fire it within 15 minutes. The Cocoa division is keeping its fingers crossed when it enters second-stage testing. But if the division continues to operate the way it has on the first two vehicles, then Martin test people can take just pride.

For Feb. 6 was a milestone date. It was the third-year anniversary of ground breaking for the Denver plant, and it was exactly one year to the day after the Cocoa Division was given first access to the Cape complex area. At that time the area was mostly sand, with only a small amount of concrete poured. Yet in less than nine months, the complex was completed and the ground bird had been erected and checked out.

Willey and teams are proud of *Titan's* record but just as proud of the success of *Vanguard II* on Feb. 17. *Vanguard*, first of the big rockets and missiles, had a rougher row to hoe than any of its successors, Willey is

quick to point out. Each Vanguard, whether it flew or not, contributed valuable information for succeeding missiles and furnished industry with invaluable data, he said.

The next big step for Martin's Cocoa division is to assist ABMA in testing of the *Pershing*, being built by the company's Orlando division. With this missile, the Army will have charge of testing, and undoubtedly new approaches will be demanded. But already, the Cocoa division is preparing for the day with a *Pershing* operations manager on the job. Work is progressing on preparing a test complex at the Cape with site clearing already underway.


Willey's first-string team of directors includes:

R. L. Sansbury, military relations; Kenneth Traut, customer services; William Harwood, information services; C. Q. Butler, procurement, production control and supply; James Holley, industrial relations; F. M. Pilachowski, finance and office services; D. S. Levin, *Titan* operations; R. L. Schlechter, *Vanguard* operations; H. E. Haydon, *Pershing* operations; J. S. Barnitz, programming and contracts; J. S. Krawczyk, quality assurance; W. C. Janda, test services, and E. J. Mommer, *Mace* operations.

TRANSTRAINER vehicle, manufactured by North American Aviation, is used in transporting *Titan* from Denver to Florida on C-133 aircraft and then takes to the road for delivery to pad.

READY for prelaunch checking is test vehicle A-5. The "A" series birds have water-filled second stages but have required a minor number of field modifications after arriving at Cape.

U.S. Surplus Sales Are Rising in Volume

Total of \$5.6 billion was sold in Fiscal 1958; efforts made to protect investment and prices.

by E. E. Halmos, Jr.

Washington—Surplus material with an original value of more than \$5.6 billion—ranging from underwear and office machinery to jet airplanes and missile components—was sold by the U.S. government during Fiscal Year 1958.

Average return to the government was about 6% of the original purchase price, meaning that Uncle Sam got back about \$336 million of his investment

Nearly \$5 billion of the total surplus sold came from the military departments. And in Fiscal 1959's first quarter, military surplus alone put up for sale totalled about \$1.5 billion in original value.

• Government alert—There is ample evidence in Washington, according to m/r's careful analysis of the surplus situation, that the government is making every effort to get as much back for Uncle Sam as possible on his original investment—and to prevent adverse effect on markets.

The present system is a great advance over the often chaotic days shortly after World War II, when tons of material of every kind were being indiscriminately dumped, amid endless complications and miles of red tape. Today there is a careful attempt—supervised by two principal agencies—to screen the material turned in as surplus and to market it in locations and in a manner that will not upset prices. Several of the armed services even conduct schools where officers are taught marketing techniques.

• Terminology first—Before you talk about "government surplus," you have to understand government terminology. Three terms are the keys: "Personal Property," "Excess" and "Surplus."

"Personal property" means virtually any property that is movable—nearly everything except buildings and land. Airplanes, desks and office machinery, as well as clothing and filing cabinets and rugs, are considered to be personal property.

"Excess" personal property is considered to exist when the head of any major executive agency (such as the Secretary of Defense) decides he doesn't need some equipment or ma-

terial to further the operations or program of his agency.

"Surplus" doesn't come into being until other agencies of the government have had a chance to look over the "excess" and decide which of it they can use. Whatever is left after this screening becomes "surplus,"

There's one more term: "Donation." When all agencies have had a chance to look over "excess" property, the Government's property manager—the General Services Administration—may "donate" some of the surplus to tax-supported or non-profit educational institutions and public health and civil defense organizations. Something like \$320 million was donated—including medical supplies and some scientific laboratory equipment—in the 1958 Fiscal Year.

• What is it?—At this point, there is very little direct missile material in the mountains of surplus. Not enough missiles of any type have been manufactured to make up much of the pile. But there is a lot of electronic components—most of it part of aircraft and aircraft-handling systems.

About the Cover-

This "skin stretching" machine developed by the Cyril Bath Company, Solon, Ohio, is being used for forming alloys of the Atlas ICBM, and an electronic control unit allows the metal to be formed with precisions that was previously unheard-of.

The electronic control unit was developed by Assembly Products Systems, the special controls department of Assembly Products, Inc., of Chesterland, Ohio.

The unit receives signals from the Bath load cell and translates them to determine the yield point of the metal to be shaped. Among the design features of the control is the use of locking contact meter-relays as stable reference points for electronic components.

Control signs from electronic units first pass to the meter-relays for checking against values that must be maintained. Then the meter-relays trigger other signals to controlling apparatus that might otherwise tend to hunt and drift.

In any case, most of the material going up for sale is military hardware and weapons. And the largest share of these weapons is airplanes themselves, which explains the low percentage return to the government on its original investment.

The bulk of the surplus items, then, is outmoded weapons—most of which can be sold only as junk. Another large share of the pile is vehicles. And much of the remainder is working machines—ranging from bulldozers turned in by the Corps of Engineers, to conveyors, materials-handling rigs, and picks and shovels. Worn clothing, damaged items and the like make up the rest.

• Where is it?—The size of the military share of surplus is obvious from the figures. In Fiscal 1958 it added up this way: The Army sold material with an original value of \$1.5 billion—out of which \$925.6 million was sold as scrap, the remaining \$592.7 million as still-usable; the Navy sold a total of \$1.7 billion worth—\$881 million scrap, \$802 million usable; the Air Force sold \$1.6 billion worth—\$1.1 billion scrap, the rest usable.

The process works this way:

In the Department of Defense, when the Army, say, decides that some property is excess, it reports this fact to one of the subordinate organizations under the control of the Assistant Secretary of Defense for Supply and Logistics.

Periodic checks with the other services establish what use, if any, can be made of the Army's excess, If there is none, the list is turned over to the General Services Administration, which sees to it that a similar check is made of all interested government agencies.

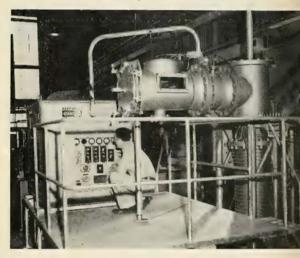
If no use is found, the material becomes surplus. If it cannot now be donated, it is put up for sale.

Military sales are then conducted at some 300 military installations around the continental United States.

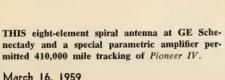
 Why is it?—Government officials contend that bad business practices are only a minor reason for the huge amount of surplus.

In order of importance, they put the reasons for surplus this way: obsolescence; wearing out; standardization of equipment; re-programing. Last bad purchasing.

ASTRONAUTICS in the news...


WESTINGHOUSE Research Labs technician uses experimental apparatus to demonstrate solar-thermoelectric power source which will have eventual application on space vehicles.

PITMAN Manufacturing Co. has delivered several of these "high-reach" units for maintenance and servicing of *Jupiter*.



ENGINEER operates Air Reduction Company's new electron beam welder for reactive and high-melting point metals. Controllable 1/16" diameter electron beam bombards materials in a high vacuum chamber.

NAVY'S Weapon Able, long-range anti-submarine rocket (conventional high explosives) is fired from destroyer.

Only the

MARMAN

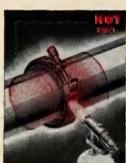
CONOSEAL Joint

PROVIDES ALL

THESE ADVANTAGES

100% Metal! That's Why MARMAN CONOSEAL
Joints Assure Unlimited Shelf Life With Perfect Seal

Mormon's all-metal CONOSEAL Joint provides two basic


1—shell life a proceedly unlimited 2—seel a montained from —300°F to 2000°F.

The CONOSEAL Joint vidues a new concept of metal-to-mehticaling in which the concal metal gashet is completely encose by moting flonges. Completed displays and availay, 6 gashet forms a superior real that withstands extreme pressure and wide thermal cycling. Distances, shock, even music lases difflictions are absorbed without loss of seat.

terrections are assurance among son or teat.

The composit design of the Mammon CONOSEAL Joint maintains anywhope cleariones needed. Single bolt feathern amphifies installation ideal far find from terre loss and structures joint, it is evaluable in four weight/threight configuration for both and ground installations. Mail coupon for complete new carloop.

Only MARMAN CONOSEAL All-Metal Joint Gives You Perfect Seal

From red bot missile engine head to the super cold of the loboratory—and of all integrations: in between—the versalile, dlimetal Marmon CONDEAL Joint connects taking and given a perfect sool. Even heard reflection up to 1/10 and, the result of temperature and pressure extremes on human of dissentior metals, are occommodated without loss of perfect seal.

occommodated villout loss of perfect lead.

The Martern CONDSEA! Joint installs quickly because fasters with a sigle half, requires minimum envelage charges because of its cosport design, sources adefaired whalf the because of its cosport design, sources adefaired whalf the factors of its sound in the sound of the s

Return the couson for complete information

For Quick Connection of High Performance Tubing, Specify MARMAN CONOSEAL Joints

ONE BOLT FASTENS SECURELY

Cannect high performance tubing quickly? Get perfect shall the Marmon CONOSEAL joint that Tiphens with a single ball—a simple, positive appearation reven in confland areas. Important design advantages: The Marmon CONOSEAL Joint Requires minimum enerologic cleanure because its diameter is only slightly larger than the Johing 2 connects. Four configurations, plays to beyon your, provide maximum opportunities for weight

Temportant operating advantages: The Marmon CONOSEAL Joint seels perfectly at existence temporeuters. It gloin to being a distainful metals, and accommodates linear deflections up to 7.18 deck resulting from temporature and pressure variations. It has hadefined shell file because it is all metals (and 28 may be used for many fluids, including liquid metals. Return she coupon for complete information.

MARMAN Heavy-Duty CONOSEAL JOINT Seals Perfectly at High Temperatures and Pressures

operating conditions for find lines, specify the oil-metal Marmon Heavy-Duty CONOSEAL Joint, It is designed to provide absolute dependability in connecting and sealing piping, even when subject to severe shock and disturtion.

Marmon Heavy-Duty CONDSEAL Joints provide maximum Insurance against leckage of failure where dissurator marter field must be placed, but as stanless steel to observant or Zercoloy. Made enthely oil metals not subject to deterioration, CONDSEAL Joints have long shell life, require no maintenance.

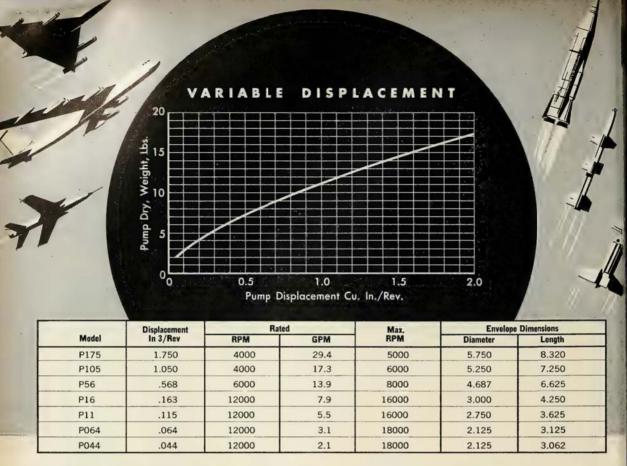
Successfully performing own on jet and modet engine last stands, high performing own on jet and modet engine last stands, high pressure furing systems, movie test stands and sounding politicisms, the Reary-Doy CONDSEAL politics of the Sounding politicisms, the Reary-Doy CONDSEAL politics on the mean things of personal dependability and simplicity of invalidation to meet a moder crops of ground applications, Lephaneghic confidence while crops of the CONDSEAL politics is provided for acceptance of the CONDSEAL politics and the successful for acceptance of the CONDSEAL politics and the successful politics and the

MARMAN CONOSEAL Joints Assure Perfect Seal of Dissimilar Metals at Extreme Low Temperatures

Even at extreme cold of -300° F, tubing of dissimilar metals can be joined in a perfect seal by the oil-netal COMOSEAL Joint. Seal is marchined through the ULL temperature range up to red hat 2000° F. (for applicable tubing). Strength and sealing capabilities are also unaffected by distortion, shock or minor linear deflection.

Ineas of effections.

The Memory CONOSAL Joint assures unlimited shell life liseases it is made entirely of metals not subject to destroination, compact design requires minima workings cleanured that the control of t



Solve high performance tube and pipe joining problems with the versatile Marmon all metal CONCSEAL Joint. Four configurations, covering temperature requirements from —300°F, to +2000°F, and pressure requirements from 1200 psig, to 6000 psig,, are available for a wide range of missile, ground support equipment, aircraft and other applications. Weight-saving, space-saving Marmon CONOSEAL Joints are leakproof, simplify tubing installation, accommodate linear deflections, assure indefinite shelf life. Return the coupon for complete information.

MARMAN DIVISION eroquip Corporation

11216 EXPOSITION BLVD., LOS ANGELES, CALIFORNIA IN CANADA: AEROQUIP (CANADA) LTD., TORONTO 19, ONTARIO

Marman Division, Aeroquip Corpora Aircraft Sales Department 11214 Exposition Blvd., Los Angele		la	MR-3
Please send me full information I am concerned with	on Marman	CONOSEAL	Joints.
temperatures from			
pressures from	psi. to		pul
type of fluid			
diometer			
Name.			
Tille .			
Company			
Address			
City	Zone	State	

A NEW FAMILY OF . . . HYDRAULIC PUMPS WITH THE LOWEST WEIGHT DISPLACEMENT RATIO

For Aircraft, Missiles, and Systems!

This new family of rotary plunger pumps is furnished with forged aluminum housings for fluid operating temperatures to 400°F. Thousands of hours of endurance and qualification testing, as well as flight tests, have proven that these new pumps will satisfactorily handle all MIL specification hydraulic fluids including Oronite 8515 and will exceed MIL-P-19692 specification requiring 750 hours of endurance. The low weight displacement ratio is accomplished

by utilizing space not available in other designs to incorporate the variable displacement feature and servo system. Plungers operate on an inclined axis to provide centrifugal return force and are arranged such that the side loading on each plunger is minimized when the maximum overhung moment occurs.

Fixed displacement pumps are also available in all models with reduced weight and envelope dimensions.

The proven experience of Bendix in manufacturing thousands of direct injection pumps and fuel systems for reciprocating engines, fuel supply pumps, fuel systems for turbine engines, hydraulic pumps, and hydraulic systems for high performance missiles assures you of a quality

unit or system meeting the high reliability standards of the industry.

FOR 3000 AND 4000 PSI SPEEDS TO 18,000 RPM

MAJOR PRODUCTS—aircraft and missile hydraulic pumps; hydraulic components and sub-systems; engine fuel pumps and fuel system components; precision bellows and bellows assemblies; thermostats and related sub-assemblies; and sub-contract manufacturing and brazing.

Hamilton Division

HAMILTON, OHIO

missile electronics

Simplified Tracking Gear Provides Much Data

Independent Sohio station uses interferometer principle to track satellites even Lunik—and records on two-channel direct-writing oscillograph

by Donald E. Pierce

Brush Instruments
Division of Clevite Corporation

CLEVELAND—Satellite tracking equipment distinguished for its simplicity is providing a wealth of authentic data quickly and accurately at the Standard Oil of Ohio (Sohio) Research Center here.

Two channels of information recorded on a direct-writing Brush Mark II oscillograph can be read directly to determine immediately whether a satellite has gone into orbit. On subsequent passes of the satellite the traces on the oscillographic charts can be interpreted directly to obtain satellite meridian passage time, angular velocity, period of orbit, and rotation modulation.

By utilizing the interferometer principle to track satellites and the twochannel oscillograph to record data, the station is deriving information never before obtained from a single source. Independent of the Minitrack chain of stations, the Sohio station was built as part of Project Moonbeam, and is operated as an extra-curricular activity by the scientists on the staff.

Data from a series of passes is correlated to obtain further orbit characteristics and to study the nature of the ionosphere, solar flares and other phenomena. By studying the differences between orbit information obtained theoretically and orbit information interpreted from satellite signals recorded on the oscillographic charts, the research staff has consistently obtained orbit characteristics with a high degree of accuracy.

• Results obtained rapidly—Since the station is not part of a chain and does not depend on information from other sources, results can be obtained rapidly. By correlating calculated information and recorded data, Dr. A. L. Jones, head of the research center, was able to predict accurately within a few minutes that Vanguard II would not orbit.

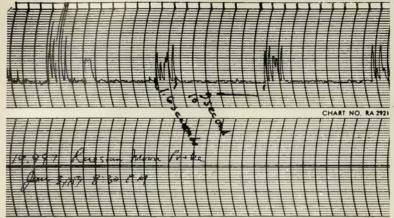
Original recordings of Sputnik III recorded on the Brush oscillograph are sent periodically by Sohio to the University of Illinois to be used in a joint study of ionosphere density patterns. By sending the original traces Sohio avoids the additional step of duplicating the trace from a magnetic tape recording on which the signals are also recorded.

In transferring a signal there is always the possibility of human error where signals recorded on tape are transferred to oscillographs for study. Errors in correlation with the time signal are frequently encountered in such procedures. With the time signal being recorded directly on the oscillograph chart at the same time the signal is recorded, there can be no error.

• Recording signals—Signals obtained from satellites are recorded to obtain three different types of information. Each requires a different method of analysis.

1. Amplitude—The amplitude of a signal emanating from a satellite as it crosses a lobe pattern is recorded on

the direct-writing oscillograph as a series of peaks and nulls. From this single line, information on orbital characteristics can be obtained.


2. Doppler Shift—Frequency shift of a satellite signal as it approaches and recedes rapidly is recorded by passing the signal through a frequency-to-voltage converter and recording it on the direct-writing oscillograph. Doppler shift can be recorded from signals picked up with either the interferometer or a standard dipole antenna.

3. Telemetering—Telemetered information contained in a signal can be decoded by recording the signal on magnetic tape and playing it back through a computer for analysis. Duplicates of tapes made at Sohio are sent to agencies interested in satellite telemetered data. A rare recording of the Russian moonshot signal recorded at the Sohio tracking station was recently sent to the Air Force Research Center for study and analysis.

• Information varied—Built to track man-made satellites, the real value of the station's combination of

SOHIO research scientist examines oscillograph trace as satellite 1959 A passes through lobe pattern of Cleveland tracking station.

HERE IS Lunik's signal 45 minutes from its closest approach to Moon.

interferometer and oscillographic recorder lies in its function as a radiotelescope. It can intercept radio waves emanating from any signal-transmitting body in space including the sun, radio stars and planetary bodies. Orbit characteristics and velocities of celestial bodies can be obtained from the two channels of information recorded.

Determination of orbital characteristics from single-station observations are made using the satellite's synodic period. A theoretical synodic period is computed and compared with the observed period. From observed angular velocity, which can be read directly from one channel, orbital parameters are obtained.

In addition to orbit characteristics, the Sohio group is obtaining information on solar flares and their effect on the ionosphere and on the magnetic field of the earth.

A very rare phenomenon was recorded at the station during a pass of Explorer I. As the satellite was passing through the antenna pattern a solar eruption was simultaneously recorded as a signal superimposed on the satellite signal. The day after this phenomenon was recorded, the area around Cleveland experienced the most beautiful aurora borealis observed in that region in a number of years.

• Interferometer—The interferometer measures the distance between nulls corresponding to crossing planes parallel to the meridian. The time between nulls is given by time signals obtained from either WWV in Washington or CHU in Canada. The Brush recorder makes an instantaneous written record of the time signals and satellite radio signals. Each channel of the recorder has two pens, one for recording the time marks and the other for recording satellite data. The data records

are accurate to 0.1 seconds.

The Cleveland station can hear satellite launching efforts about four minutes after blast-off and can determine within two hours afterward whether the artificial moon has gone into orbit. The four-minute delay exists since the Cleveland horizon is 125 miles above ground at Cape Canaveral,

- Receiving system—The interferometer design of the Cleveland station is a slight variation of the Navy's Minitrack design. The Sohio station is unique as compared to other amateur stations because the Sohio group combines two interferometers on one receiver to resolve ambiguity of the null point at the meridian. The tracking apparatus consists of antennas, a hybrid junction, a converter, a communications receiver, time-marker circuit, direct writing oscillograph and a tape recorder. Band width of the receiver is 500 to 1000 cps.
- Antennas—In the original interferometer design suggested by the Navy, two receivers were operated off one antenna 180° out of phase. This design was proposed to eliminate anticipated noise interference. The satellite, however, puts out such a strong signal that this type of setup is not required. Instead, two antennas are connected to one receiver.

Another variation from the Navy design is the use of Yagi antenna arrays instead of dipoles and screen reflectors. Because of the generally low altitude of the satellites at this station and because most American satellites travel south of this station, the Yagi directional antennas are used.

A steerable antenna, the latest addition to the tracking station, is used to pick up signals too weak to be detected by the interferometer. It can scan the entire horizon in 30 seconds and receive signals 250,000 miles away—20,000 miles beyond the moon.

The interferometer antennas are situated on a true east-west line. The center of the lobe pattern (meridian) is directed to follow the north-south meridian line exactly. This orientation permits accurate detection of the meridian line passage of the satellite.

• Density variation—Although the antennas of the interferometer are accurately aligned with the sun, a consistent error of .03 degrees is observed at 108 mc. Error is detected by comparing data recorded at Sohio with data made available from the Naval Research Laboratory. The error is apparently caused by the electronic density of the ionosphere. Study of data obtained over a long period can reveal information on densities, refraction, and variance with many more possibilities existing.

Electronic density variations are part of the study made by the University of Illinois on the ionosphere. In conjunction with this study the Sohio center is sending all data recorded from Sputnik III to the university. By studying the data collected from various stations and applying methods of triangulation, the university is carefully calculating density patterns of the ionosphere.

Data Obtained

Successive meridian passage times give more than just the orbit period of a satellite. The interval between passes and the change in interval during a succession of passes are clues to the position of the perigee point and its rate of shift in the orbit plane. The slow pivoting of the orbit plane as a whole about the earth's axis also contributes to this change in interval.

The dimensions of the orbit as well as the linear and angular velocities of the satellite follow from the orbit period and eccentricity. Eventually, it is hoped to combine the peak spacing in the oscillograph trace with a calibration of the antenna to show the inclination of the orbit to the meridian and to the horizontal at each passage.

Meridian passage time—Meridian passage time can be placed to within 0.1 second of passage by locating the center of the lobe pattern as shown on the oscillographic chart.

Period—By referring to the time the satellite passes the meridian on a number of occasions, subtracting the time interval for the rotation of the earth and correcting for other factors, the period for one complete orbit about the earth is accurately established.

A-286 JET ENGINE TURBINE WHEEL OF SPECIAL ALLOY MEETS UNUSUAL DEMANDS. **Typical Properties** Yield Strength .2% Offset Elon-Tensile Reduction Strength gation of Area Hub, Longitudinal 158,000 117,000 22.2% 40.0% Web, Radial 116,000 40.0% 159,000 21.3% Rim, Tangential 162.000 117,000 20.3% 39.7%

UNIFORMLY FINE GRAIN SIZE and uniformly high properties from center to surface are characteristic of the Cameron technique. Intricate, unusual, or conventional shapes are produced in a single heat.

INCREASED TRANSVERSE DUC-TILITY—several times above normally expected values. Transition from billet to final shape results in movement of metal under high internal pressure.

HIGH ULTRASONIC STAND-ARDS are consistently met by internal working of the metal which breaks up segregated material inherent in the center of steel and high density alloys.

PARTING LINE PROPERTIES-The totally enclosed method of forging, eliminating a flash line, avoids flash line magnetic indications and the localizing effect of the flash grain on transverse, fatigue, and stress rupture properties.

Extreme service components for airframes, jet engines, guided missiles and a wide variety of other end uses are finding a solution in the Cameron split-die forging process. If you have a problem . . . call, write or come by

ameron IRON WORKS, INC.

> SPECIAL PRODUCTS DEPARTMENT P. O. Box 1212, Houston, Texas

Solid-propellant auxiliary power unit

Titanium missile pressure vessel

Combination main and after-burner fuel pump

Coaxial

Four-stage

100,000 rpm turbinedriven alternator

Missile gyro ground test unit

Jet engine case assembly

100 MILLION JET ENGINE BLADES 1.1 MILLION AIRCRAFT AND MISSILE FUEL PUMPS APU'S FOR 6 DIFFERENT MISSILES

TAPCO GROUP

These are some of the products of the Tapco Group of Thompson Ramo Wooldridge Inc. With \$150,000,000 of high-efficiency production facilities, Tapco is one of the nation's leaders in the development and manufacture of mechanical systems, equipment, and components that must meet stringent performance specifications under extreme conditions of temperature, corrosion, and stress.

Through its metallurgical and chemical laboratories, Tapco continually extends its capabilities in the technology of high-temperature alloys, powder metallurgy, cermets, ceramics, and other materials. Tapco was one of the principal pioneers in the fabrication of titanium, and is cur-

rently engaged, in cooperation with E. I. du Pont de Nemours & Co., in the development of manufacturing techniques to handle niobium and its alloys.

In product design and development, TAPCO'S 500-man engineering team is experienced in a wide range of specialties, including hydraulics, aerodynamics, electronics, pneumatics, thermodynamics, and nucleonics.

Aircraft and missile technology increasingly demands mechanical systems, equipment, and components that can meet uncommon requirements of precision, strength, and reliability under the most severe environmental conditions. The combination of engineering, metallurgical and manufacturing competence represented in the \$160,000,000 per year activities of the Tapco Group provides an integrated capability of unusual effectiveness for the design and manufacture of such products.

Thompson Ramo Wooldridge Inc.

MAIN OFFICES CLEVELAND 17, OHIO LOS ANGELES 45, CALIFORNIA

... missile electronics

Angular velocity—The satellite's angular velocity through the center of the lobe pattern can be used to derive orbit characteristics when repeated measurements from successive passes are available. Angular velocity is read directly from the oscillographic chart.

Rotation modulation frequency—When the symmetry of the satellite antenna pattern is known and subsequent charts are compared, information relating to rotation rate changes is obtained. Dips observed in the charts are caused by rotation of the satellite. The signal frequency is modulated as the satellite rotates and the antennas cycle.

Orbit characteristics—To obtain orbit characteristics comparison is made between observed intervals and calculated intervals between successive me-

ridian passages.

 Moonrocket signals—Attesting to the effectiveness of signals recorded at the Sohio tracking station is the record of distinct signals sent out by the Russian moonrocket. The signal was picked up in Cleveland on three different occasions.

The Russian Lunik was missed almost completely by tracking stations across the country. Jodrell Bank in Manchester, England, with the largest radio telescope in the world, failed to pick up the rocket's signals.

Signals from the moonshot were picked up, however, at the Sohio station by a 24-foot dipole antenna.

The signal reported by the Cleveland station was confirmed by Air Force intelligence as coinciding with reports on the frequency of the space vehicle's signal. This included number of components in the keyed signal, duration of the signal and time between pulsed transmissions. Pulses had an average duration of 1.6 seconds and occurred every 10 seconds.

The first and third occasions on which the signals were recorded were by reflection from the ionosphere. The other was picked up directly. Duration of the signals recorded was approxi-

mately two hours.

Announcement of the moonshot was made at 5:00 PM Friday, January 2. Signals were first picked by Sohio at 7:30 PM the same day and were recorded for two hours. They reappeared at 3:30 AM Saturday and lasted until 5:00 AM. The last time the signal was picked up was from 8 to 9:30 PM Saturday.

Four frequencies were transmitted from the moonshot, 19.993, 19.995, 19.997 and 183.6 mc. The 183.6 mc signal was transmitted from the second stage of the rocket. This stage was dropped before any signal could be picked up on that frequency.

Here is a man you should know he's a DELAVAN FUEL INJECTOR SPECIALIST

James R. Brucker specializes in injection devices using flow controls. He's a Senior Project Engineer with Delavan. And during his six years of developmental experience, his products have become bill-of-material items on some of the world's most advanced jet engines for aircraft and missiles.

It's specialized engineering talent like Jim Brucker's that has made Delavan first choice for fuel injection problem solving. If fluid metering and atomization are part of your product, take advantage of Delavan's specialized experience and proven ability to deliver aircraft quality. Send specifications to the address below for obligation-free recommendations.

World's largest nozzle specialist

Paraffin Wax May Be Better for Shielding

Researchers feel hydrogen atoms in wax could absorb more neutrons than plastics

by W. C. Parle and A. M. Erskine

Berkeley, Calif.—Sheet lead and paraffin wax in slab form have long been used as shielding materials for absorption of gamma rays and neutrons, respectively. Now the Radiation Laboratory of the University of California, assisted by The California Ink Company, has worked out a new method to combine use of the two materials by uniform dispersion of very finely powdered lead in wax with close tolerances as to density and uniformity of composition.

• The problem analyzed—At first it was thought that the lead-wax composition could be manufactured in the form of granules. But consideration of the desired final composition indicated that the problem was actually one of dispersion, analogous in principle to the dispersion of a pigment in a vehicle.

The lead powder, if sufficiently finely divided, would function as a pigment, and the wax in the melted condition would behave as the dispersing medium or vehicle. Because of the wide difference in density between the two components, leading to rapid settling of the lead phase on discontinuing agitation or standing in molds before solidification, it became essential to find some means of appreciably increasing the viscosity of the wax just above its melting point.

It was also desired to manufacture the product in two general forms: one involved pouring the fluid dispersion into containers of various intricate shapes, in which the suspension would solidify on cooling and completely fill the containers with a composition of uniform density; the other form was bricks or large blocks of various sizes having small tolerances in dimensions and readily adaptable to built-up structures.

• Process development—There was an extensive laboratory search for additives which in very small amounts would increase the viscosity of the melted wax at a temperature a few degrees above its melting point. This was complicated because the additive could not contain significant quantities of elements which could give undesirable nuclear reactions with gamma

Paraffin-lead shielding will have important use in future space vehicles, particularly for biological shielding and protecting instrument packages against gamma rays and neutrons.

This article by W. C. Parle, technical director of California Ink Company, Inc., Berkeley, Calif., and Dr. A. M. Erskine, the firm's research consultant, discusses a new approach to the combined use of sheet lead and paraffin wax. The material is being used in a portable research reactor at Atomics International, Canoga Park, Calif.

radiations or neutrons.

Investigations were also made of types of equipment in which efficient dispersion could be carried out in batches of at least a ton. Other requirements included capability of the dispersion equipment to pour the mixture into molds, close temperature control, etc.

It proved to be relatively easy to manufacture bricks, as well as large blocks, by pouring the suspension into wooden molds, and removing the side walls after solidification.

• Raw materials—The lead powder used in this process met rigid specifications of purity and fineness. The purity was controlled basically by requiring that the powder be manufactured from corroding, chemical, or desilvered commercial pig lead. In addition, the maximum permissible percentage of arsenic, antimony or tin was very small (of the order of a few parts per million) and oxygen contamination was kept below a few parts per thousand by weight. The fineness

REPRESENTATIVE lead wax forms.

of the lead was specified by a screen analysis, which included at least 30% passing through a 325-mesh screen (44 microns).

The paraffin wax was covered by Federal specifications including a minimum melting point of 160°F. The oxygen specification was the same as that applied to the lead.

• Physical properties—The weight ratio of lead to wax (84/16) used in the composition met the specification of a density of 4.0 or 250 lbs./cu. ft. (plus or minus 5%) in the final product. A major problem was to maintain this uniformity of density throughout the large masses which were cast. Obviously, air inclusions had to be prevented completely.

Although gamma ray shielding depends solely on the dense lead present in the mixture, the density of the composition as a whole was brought into a range which permitted relatively easy handling.

Other properties of interest shown by the lead-wax product were: tensile strength 200-250 lbs. per square inch, shear 213 lbs. per square inch, elongation 0.6% and compression 30 lbs. per square inch at 90°F.

• Shielding effects—Tests of the lead-wax product for effectiveness in shielding against gamma rays have shown an attenuation coefficient of 0.567 for gamma rays with energy of 1.28 Mev (million electron volts) produced by sodium-22 isotope source. (See S. Glasstone, "Principles of Nuclear Reactor Engineering," page 75, equation 2.60.3). This shielding power may also be expressed as a "mean free path for gamma radiation protection" of 10.2 cm. (4 inches).

Corresponding tests for shielding against neutrons gave an attenuation coefficient of 0.147 for fast neutrons with energy of 2 to 4 Mev from a plutonium-beryllium source. Expressed in terms of "mean free path for fast neutron protection" the value of 10.2 cm.—same as above—was obtained.

Since neutron absorption depends entirely upon the hydrogen atoms in the wax, the use of paraffin wax offers an advantage over plastics, such as polyethylene, because of its higher hydrogen content. Just give us the "envelope". . . we'll do the rest!

ASSURE MAXIMUM RESULTS ON PRIME AND SUB-CONTRACT PROJECTS

*
Design
Tooling
Production

Contemporary weapons systems, because of their complexity, necessitate sub-contracting of major components, sub-systems and structures. And versatile capabilities...theoretical, technological, mechanical and managerial ... are required to produce these "envelopes" efficiently and economically.

Aeronca has these integrated facilities. That is why we can provide a *Co-ordinated Design*, *Tooling and Production Service*. This packaged service begins with evaluation of basic environmental data and culminates with "on schedule" deliveries. It has been eminently successful in supporting current operational weapons systems.

Aeronca's leadership is evident in its existing facility for designing and producing... in quantity... a complete range of brazed stainless honeycomb structures. This specialized capacity is one of the few *in actual operation* in the industry today.

With extensive background in proprietary and sub-contract programs, Aeronca is prepared to work with you on air vehicle, missile, ground support equipment and technical consultation projects. And we can say with confidence . . . just give us the envelope and we'll do the rest.

AERONCA manufacturing corporation

1716 GERMANTOWN ROAD MIDDLETOWN, OHIO

844:-AC

of missile fuels, for instant engine starts in any weather, windshield defrosting, comfort for personnel, cargo and equipment protection.

Liquid heater reliability is a result of refinement and design simplification over a period of ten years of production. Proved in Arctic and Antarctic use, they are already serving in fire crash trucks, prime movers, ice removal units, and in heating decontamination and cleaning fluids.

We'd like to discuss with you any heat requirements you have for missile handling and ground support equipment or vehicles-for fuel processing or for protection of equipment and personnel. Call in your Janitrol representative.

Janitrol Aircraft Division, Surface Combustion Corp., Columbus 16, Ohio.

Spraying Technique May Cut Radome Cost

Gladding, McBean process aims at doing away with precision grinding. Company has tool-up contract for Sparrow III radome and sees great potential for future.

by Richard Van Osten

Los Angeles—The high cost of ceramic radomes for missiles may be reduced by a new technique developed by Gladding, McBean & Co., 84-year-old ceramic firm.

First application will be a radome for the Sparrow III air-to-air missile. A contract for a tool-up phase has been awarded to GMB by Raytheon, Sparrow III prime contractor. Dollar value and number of units to be produced have not been disclosed.

Prime target of the new process was elimination of expensive and timeconsuming precision grinding steps, which are suitable for one-of-a-kind or very low production runs, but completely unsuitable for high production.

To meet military specifications on shrinkage, shape, tolerances and electrical uniformity, GMB chose alumina—either 97% or 99% pure, depending upon ultimate use of the radome.

• Slurry spraying—First step is the spraying of the high-purity slurry over a special steel mandrel. Mandrel dimensions allow for dimensional tolerances, but the spraying operation is the main key to final success.

The slurry must be sprayed at a pressure high enough for maximum particle packing. It also must be of the proper viscosity to pass through a specially-designed spray gun and atomized to partly dry during buildup.

To accomplish this, alumina is mixed with an organic binder that is soluble in a volatile liquid. The latter remains "tacky" upon contact with the preform and with itself, yet does not soften or deform. The binder is removed during preliminary firing, leaving a final body of either 97% or 99% pure alumina as required.

- Pressure and firing—After the slurry has dried on the preform mandrel, the entire assembly is enclosed in a neoprene bag and placed in a reactor where it is subjected to pressure of over 30,000 psi. This achieves a uniform density over the entire radome surface. The radome is then stripped from the mandrel and sent through a preliminary firing at about 2000°F.
- Machining and firing—Next step is to machine the radome to the final wall thickness and aerodynamic con-

figuration—with a low-cost process developed by GMB for making joints in sewer pipe!

This machine step allows also for the calculated shrinkage that occurs in final firing. Last phase is the firing in a regenerative kiln at a temperature of over 3000°F.

Much of the procedure is not really new, except to the ceramic industry. Basic development was accomplished under a \$215,000 contract from AMC's Aeronautical Systems Center, WADC. Contract calls for two study phases and delivery of other (not Sparrow III) radomes to WADC.

• Great potential—The process applies to fabrication of other ceramic items of high-purity oxides, and is believed to have much future potential. Time and cost figures are only calculated, but the technique is said to be cheaper than Fiberglas layup methods on a size-for-size, shape-for-shape basis.

It also offers the ability to massproduce ceramic radomes with wall thicknesses of 0.05 in. with tolerances of ±0.001 in., an important factor in obtaining constant dielectric characteristics throughout the structure.

• Varied products—The Raytheon and WADC contracts mark GMB's first major step into the missile field, although it has produced alumina connector insulators used in missile umbilical cords and in ignition systems subject to high pressure and temperature.

The company has also produced ceramic antenna "windows" for missile and aircraft radar use; ceramic printed circuit boards with a unique plating process; zirconia rocket nozzles; diode holders; solar furnace parts, and ceramic suspension mounts for liquid oxygen containers in liquid propellant engines. GMB is also engaged in classified studies involving nuclear reactor cores and shielding. Certain of these areas involve ceramic laminates in combination with epoxy plastics and foamed ceramic sandwiches.

In R&D studies, sponsored mainly with company funds, GMB has investigated control of electrical characteristics in relation to porosity of ceramics; the use of glass fibers to prestress ceramics; and the addition of metal fibers to increase conductivity.

STEEL MANDREL is sprayed with solution containing 97-99% alumina.

PRESSURE IN reactor assures uniform density over entire surface.

TECHNICIAN PLACES radome in bottom of the kiln preparatory to firing.

AMERICAN AVIATION PUBLICATIONS

AMERICAN AVIATION PUBLICATION PUBLICATIONS

AMERICAN AVIATION PUBLICATION PUBL

airliff

the magazine of world air transportation

Beginning in April, AMERICAN AVIATION Magazine becomes airlift—the monthly magazine serving the world air transportation market. This is not only a change in title but an updating of editorial concept brought about by the evolution within the air age itself. airlift is edited for the worldwide commercial, military and corporate Air Transportation Industry. Feature articles are designed to interpret trends and developments. They highlight new products and equipment, operations, maintenance, communications, and engineering. airlift offers editorial coverage of all phases of the market concerned with transportation of people and goods by air.

Airlift—a Multi-Billion Dollar Market. With 25,000 circulation, airlift reaches men in management, engineering, operations, maintenance, overhaul and

purchasing, in all segments of the Air Transportation market. This includes both domestic and international air carriers, supplemental and all-cargo carriers, military transport and logistics, airways and navigational facilities. Also business aircraft, terminal airports, helicopters and fixed base operators.

Airlift—Another "Market of the Future". airlift is a specialized magazine for a specialized market—world air transportation. It is not concerned with combat aircraft and weapons systems. Military interests aside from airlift are served by MISSILES AND ROCKETS, and ARMED FORCES MANAGEMENT—other American Aviation Publications serving "markets of the future" Sell the world air transportation market in airlift No other magazine serves this market directly.

air'lift, v.t. to transport by air

American Aviation Magazine Since 1937

AMERICAN AVIATION PUBLICATIONS, INC.

1001 VERMONT AVE., N.W. • WASHINGTON 5, D.C.

World's Largest Aviation Publishers

missile business

by Reed Bundy

Missile and rocket stocks have been pushing the New York stock market to all-time highs recently, with Thiokol Chemical providing much of the impetus. The exchange set successive new records on March 2, 4, 5 and 9. During this period, Thiokol's gains ranged at times as high as 12 points, although profit-taking took some of the wind at times. Other stocks that rang up heavy gains at one stage or another included General Tire, American Potash, Zenith, RCA, Raytheon, Texas Instruments, Litton, I.T.T. and

Some experts called it a "buy now, pay later" push resulting from big contract awards (Minuteman) to Thiokol and Aerojet-General (a General Tire subsidiary) and the general lift in missile-space business.

Some of the most spectacular missile-space growth is reported in Florida, where electronics companies alone have 15,000 employees, an annual payroll of \$60,000,000 and a gross annual product figured conservatively at \$180,000,000, according to the Florida Development Commission. The commission emphasized that these figures do not include Cape Canaveral or Eglin Gulf Test Range-only private manufacturing activity. Its new directory lists some 221 companies "engaged in manufacturing and research related to electronics, aircraft, missiles and scientific instruments.'

The Armed Services have reported to Congress that they are stepping up use of incentive contracts to hold down "spiraling costs" of Defense contracts. In separate reports to the Senate Appropriations Committee:

The Air Force said constant requirements for technically superior weapons caused by "competitive technological advances" keep pushing prices higher. It said it is concentrating on incentive-type contracts and such other steps as tighter monitoring of contractors' overhead, closer surveillance of subcontracting activities and research, and greater standardization.

The Army said it was applying similar checks, seeking competitive bids wherever possible and, in missile procurement, using the "breakout" technique. Under this program, as components are developed to the stage where drawings and specifications are available, they are broken out from the prime contract, procured by the government on a competitive basis, and furnished to the subcontractor.

The Navy reported it too was applying closer checks and surveillance and putting greater emphasis on profit incentives. "Implicit in the rewarding of contractors with incentive payments is the assumption of greater risks by them," the Navy said.

Fairchild Engine & Airplane Corp. is closing its Engine Division at Deer Park, L.I., and will sell the plant with the exception of the Gas Turbine and Research Laboratories. J. H. Carmichael, company president, said the move resulted from cancellation of the J83 engine program by the Air Force and because of serious financial losses experienced by the company last year.

Some 160 of the remaining 625 employees at the Engine Division will be retained for a short time.

A "tithe for science" bill has been introduced by Rep. Overton Brooks (D-La.), chairman of the House Space Committee. He said the bill will provide that whenever a contract of \$10,000 or more for research and scientific investigation is awarded, 10% of the value of the contract shall be set aside for scientific research programs. He said this would give basic research a badly needed shot in the arm.

More acquisitions have been reported as firms move more heavily into missiles and its allied fields. To mention a few: Northrop Corp. is proposing to acquire Page Communications Engineers, Inc., of Washington, D.C., for 95,000 shares of its common stock. The deal is pending before the California Corporations Commission but is expected to be completed in a few more weeks. Meantime, Northrop has approved a \$4,000,000 expenditure for a new R&D building for its Nortronics Division . . . Bendix Aviation has entered into an agreement to acquire, for an undisclosed amount, the business and substantially all the property and assets of M. C. Jones Electronics Co., of Bristol, Conn. . . . Turbo Dynamics Corp., of Los Angeles, has acquired 30% of the common stock of National Research Associates, Inc., College Park, Md., and 50% of the common stock of Iresco, Inc., of Santa Monica.

Includes chemical, manufacturing and performance details . . .

ROCKET **PROPELLANTS**

by FRANCIS A. WARREN

Manager, Special Projects Section, Department of Chemistry, Southwest Research Institute

1958. 228 pages, \$6.50

The purpose of this book is to provide technical men with basic information on the materials being used to propel the rockets and missiles of today, and to recount in an objective manner the fascinating story of rocket fuel development.

It contains the composition, manufacturing methods, and performance details of both solid- and liquid-propellants used in rockets, from small signal units to the largest missiles currently being launched. The book also includes chapters on propellant burning, ignition and igniters, and the various rockets that use each kind of fuel. There is comprehensive information on safety in the propellant manufacturing plant, and quality control of the product.

A final section looks to the future of the present fuels, and reviews the theories that may lead to new ones, such as ion and photon propulsion, and antigravity.

CONTENTS: Propellant Systems; Propellant Ingredients; Solid-Propellant Manufacture and Processing; General Performance Characteristics; The Burning of Propellants; Ignition and Igniters; Solid-Propellant Rockets; Liquid-Propellant Rockets; Safety; Evaluation and Quality Control; The Future of Propellants.

Free Examination Order Form MAIL THIS COUPON TODAY!

L		-
1	REINHOLD PUBLISHING CORPORATION Dept. M-439, 430 Park Ave., New York 22, N. Y.	
ı	Dent M 420 420 Del 4	
ï	Dept. M-439, 430 Park Ave.,	
ı	New York 22. N Y	

Please send me ROCKET PRO-PELLANTS to read and examine. In 10 days I will return the book and owe nothing, or I will remit \$6.50, plus postage.

ADDRESS

ZONE STATE

SAVE MONEY! Enclose payment with order and Reinhold pays all shipping costs. Same return privilege, refund guaranteed. Please add 3% sales tax on N.Y.C. orders. Do Not Enclose Cash!

SPHERICAL BEARINGS & ROD ENDS

Here's quality you can count on for transmission of motion. SPHERCO solid onepiece race protects the ball from binding and pinching under load and resists shock, vibration and impact. An exclusive SPHERCO method of locking the insert in a rod end body, assures you of a smooth, free running but rugged rod end bearing.

SPHERCO

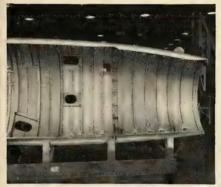
SEALMASTER BEARING DIVISION STEPHENS-ADAMSON MFG. CO. 25 RIDGEWAY AVE. • AURORA, ILL.

propulsion engineering

Key to cheaper boron fuels: recycle the reactants; end the need to collect, purify, or discard unreacted starting materials. This seems to be the reason Stauffer-Aerojet feels confident its new process will greatly undercut Callery and Olin Mathieson, pricewise. Stauffer-Aerojet will use the new process in its Sacramento, Calif., plant announced in January.

Beryllium fuels will not have Congressional sympathy this year. Some research sponsored by Government agencies will help beryllium pushers, but the biggest aid is not forthcoming—there will be no rapid amortization of equipment needed for development work. A House Ways and Means Committee insider puts it this way: "Fast tax write-offs are out of fashion." Even industries already engaged in proven defense production will find rapid amortization blessings from the 86th Congress very few and far between, he says. Thus, he offers no encouragement to companies ready to invest in equipment and tooling for exotic fuels and materials yet to be proved.

Ozone will be cheaper, more plentiful as soon as a new National Bureau of Standards process goes commercial. The Bureau is almost ready to talk about the process, reveals this much in advance: it goes at a low temperature, the key is a microwave discharge. Bureau of Standards practically never discusses commercial possibilities of its developments, but one scientist says: "The industry boys will be happy with this one."


Demand for oxygen at the turn of the year was steady enough to keep suppliers busy and reassure them on the business success of new plants underway. The Department of Commerce says industrial gases made a good come-back from the early 1958 recession. "Some surplus capacity" is the story in almost every section of the country, but new government projects and an increased steel industry need will swallow this before the year is over. This is why industrial gas leaders can smile when they talk about their new facilities coming on stream this year and early next.

Most talked-about new oxygen plant is Union Carbide's 100 million cubic feet/month facility due early in '60 near Huntsville. Carbide is assuring a bright and long future for its Linde Division operation by looking beyond the government and missiles for its market. Besides missile business around Huntsville, the heavy steel-aircraft-chemical complex between Birmingham and Chattanooga assures Linde a good market, makes steady, high-volume output economical and thus guarantees missilemen a good on-the-scene supply.

A new gelling agent expected to find a use in solid fuels is available from American Cyanamid. Cyanogum-41 converts thin solutions to stiff gels either instantly or at a predetermined later time, depending on the catalyst system and temperature. Add the catalyst just after white Cyanogum-41 powder is added, and many electrolyte solutions immediately take on solid properties. Add the catalyst later, and control the temperature between 26 and 185°F, and the solution gels within 10% of a preset time, up to 24 hours later. After the catalyst, the company reports, and the new product will also gel ethylene glycol, glycerine, sulfuric acid and other solutions which to Cyanamid means a "use for Cyanogum-41 in solid fuels."

Plastic piping is getting wider use around chemical plants and some missile facilities. Du Pont's Harvey E. Atkinson told the national meeting of the American Institute of Chemical Engineers that polyvinyl chloride (PVC) Type I is working out best for handling corrosives at low and medium temperatures—from 0 to 150°F. He cited cases where PVC is replacing rubber-lined steel pipe for handling acids. An example: \$20,000 saved in an operation involving 5000 feet of pipe.

Access door on DC-8 engine assembly, fabricated entirely of titanium. Skin is .016" thick, ribs and longerons are .032" thick.

Access doors on engine assemblies, pylon skirts, and hundreds of other structural parts on the Douglas DC-8 are fabricated from high strength, light weight, corrosion resistant titanium.

Mallory-Sharon service engineers have worked closely with Ryan Aeronautical Company engineers—a major supplier of parts and components for the DC-8. New high strength titanium alloys, improved methods of machining and forming, have been developed and employed. The result has been increasingly wide application of titanium's weight-saving advantages—up to 57% over stainless steel in many cases.

May we help you gain more benefit from titanium's unusual capabilities? Our experienced Service Engineering group is ready to assist you. Or write for new bulletin on Recommendations for Machining Titanium.

MALLORY-SHARON METALS CORPORATION . NILES, OHIO

Integrated producer of Titanium • Zirconium • Special Metals

less than 1% deviation from linearity.

> wide range of pressures ... now in stock

A wide selection of the new Bristol stock 1/8" OD capsular elements is now available in pressure ranges from 15 to 350 psi.

These are the latest of Bristol's long-life, Ni Span C pressure sensing elements widely used in the aircraft and instrument fields. For applications requiring miniaturization, this new 1/8" OD is the optimum size. Nominal deviations from linearity of these precision miniatures is less than 1%.

Other Bristol stock capsular elements range from 15/2" to 21/32" OD and have a nominal deviation from linearity of less than 1/2% (deviation due to hysteresis of less than 1/4%). Normal operating temperature range is -65° to 300° F.... for higher temperatures to (550°) a slight 2% travel change may be expected.

Bristol has been manufacturing pressure sensing elements for 70 years. For further information on these capsular elements with outstanding linearity characteristics write for Bulletin AV2001: Aircraft Components Division, The Bristol Company, 173 Bristol Road, Waterbury 20, Conn.

BRISTOL FINE PRECISION INSTRUMENTS
FOR SEVENTY YEARS

contract awards

AIR FORCE

- \$85,000,000-Aerojet-General Corp., for R&D on the Minuteman program.
- \$77,000,000-Thiokol Chemical Corp., for R&D on the Minuteman program.
- \$3,678,000-Sperry Phoenix Co., div. of Sperry Rand Corp., for remote guidance and control systems for pilotless jet planes.
- \$776,625-Tele-Dynamics, Inc., Philadelphia, for telemetric data transmitting sets, major components (black boxes), spare parts, test equipment and data for QF-80 drones.
- \$568,470-Lewyt Manufacturing Co., Long Island, N.Y., for coordinate data monitor.
- \$410,371-United States Steel Corp., for stainless steel sandwich rolling program.
- \$200,000-Epsco-West, Anaheim, Calif., Div., for switch timing and monitoring systems for Atlas program at Vandenberg AFB (sub-contract from Convair).
- \$193,839-Northrop Aircraft, Inc., for development and design of improved methods for production of high-strength, lighter weight aluminum and magnesium castings using permanent molds and centrifugal force techniques.
- \$151,072-Gilfillan Bros., Inc., for modification kits to make spare units compatible with modified radar sets.
- \$103,951-New York University, for studies of electromagnetic theory stressing problems in waveguiding, radiation and diffraction.
- \$99,193-Bendix Aviation Corp., Pacific Div., for telemetry system used in support of missile test track project WS-133A.

(Horkey-Moore Associates, Torrance, Calif., reecived a subcontract from Convair for additional force ejection launchers for Genie missiles on F-106 interceptors; United Control Corp., Seattle, was awarded a Convair sub-contract for accelerated engineering and development of equipment to be installed on Atlas missiles. Dollar amounts of these awards were not announced.)

ARMY

- \$2,733,000-Winger Construction Co., Inc., Ottumwa, Iowa, for furnishing and installation of propellant loading system skids at Offutt AFB and Warren AFB.
- \$2,500,000-General Instrument Corp., Brooklyn, N.Y., for miniaturized air-borne radar "beacons" for target-spotting drones.
- \$1,010,720-Western Electric Co., Inc., for Nike spare parts and components.
- \$794,285-Robert J. Genofile, Inc., Montrose, Calif., for construction of shops, guard house and weather facility at Vandenberg AFB.
- \$785,598-Radio Corporation of America, for electron tubes (three contracts).
- \$659,480-Gordon Fields, Builders, San Bernardino, Calif., for construction of data acquisition building at Vandenberg
- \$402,596-Sperry Gyroscope Co., for additional klystron development models and man-hours of work on broad-banding of high-power C-band klystron amplifiers.
- \$149,535-Eitel McCullough, Inc., San Carlos, Calif., for electron tubes (two contracts).

NAVY

- \$51,900,000-Sperry Gyroscope Co., for missile-guidance radars on Terrier-equipped ships.
- \$5,500,000-National Company, Inc., Malden, Mass., for "no drift" radio receivers.
- \$137,487-Cutler Metal Products Co., Camden, N.J., for shipping centainers for major missile section.

... missile handling is faster, more precise with hydraulic power by VICKERS

Looking for a better drive to Move missiles from storage to launchers . . . to Aim missiles precisely . . . to Guide or Track missiles? Then consider these features of a Vickers hydraulic drive:

Ultra fine control — missile launchers and radar drives have been trained and elevated with exceptional accuracy down to speeds approaching zero.

the fastest acceleration, de-Fast positioning celeration and reversal of any power transmission. **High power gain** — one milliwatt input easily controls hundreds of horsepower.

Narrow deadband -- narrower than any other high horsepower drive.

Excellent efficiency overall mechanical efficiency of hydraulic transmissions (motor and pump)

can exceed 85% at full load.

Consider, too, these other advantages — unusual compactness . . . packaged units . . . extreme relia-

If your missile handling problem is urgent, phone, wire or write for further information or an im-mediate visit by one of our application engineers.

For more than fifty years, we have worked on applications ranging from the largest gun turrets to missile launchers. So, tell us about your drive problem. There is an excellent possibility that we have already developed the units that will fit your needs.

VICKERS INCORPORATED

DIVISION OF SPERRY RAND CORPORATION

Marine and Ordnance Departmen WATERBURY 20, CONNECTICUT **Hydraulic Products** for Marine and Ground Defense Applications

MO-212

DISTRICT SALES OFFICES: DETROIT, MICHIGAN - EL SEGUNDO, CALIFORNIA - SEATTLE, WASHINGTON - WASHINGTON, D. C.

R/M PYROTEX® REINFORCED PLASTICS ... DEVELOPED TO ENDURE THE FIERY REALM OF THE ROCKET

Light, strong, heat resistant . . . for low-cost, precision fabricated rocket parts both structural and aerodynamic

Looking for a material that will withstand the elevated temperatures generated by missiles and rockets-internally from burning propellants, externally from aerodynamic heating? Must this material have good insulation and thermal properties, chemical and water resistance, and take a smooth finish? If so, one of R/M's family of Pyrotex reinforced plastics may be the solution to your problem.

The many outstanding thermal and structural features of R/M Pyrotex have led to its use on almost every U.S. missile. It has been fabricated into parts such as nose cones, fins, igniter tubes, rocket throats and sliver traps. Its exceptionally good dimensional stability makes possible mass production to precision standards. And it is low in cost. Write for additional information.

RAYBESTOS-MANHATTAN, INC.

REINFORCED PLASTICS DEPARTMENT, Manheim, Pa.

FACTORIES: Manheim, Pa.; Bridgeport, Conn.; Paramount, Calif.; No. Charlestin, S.C.; Passaic, N.J.; Neenah, Wis.; Crawfordsville, Ind.; Peterborough, Ontario, Canada

RAYBESTOS-MANHATTAN, INC., Asbestos Textiles . Laundry Pads and Covers . Engineered Plastics . Michanical Packings • Sintered Metal Products • Industrial Rubber • Rubber Covered Equipment • Brake Linings

Brake Blocks • Abrasive and Diamond Wheels • Clutch Facings • Industrial Adhesives • Bowling Balls

when and where

MARCH

MARCH
The American Rocket Society, National
Capital Section, luncheon sponsored
by m./r. Speaker is Richard E.,
Horner, Assistant Secretary of the
Air Force (R&D). National Press
Capital Section and Congress, Pan-Pacific
Auditorium and Congress, Pan-Pacific
Auditorium and Ambassador Hotel,
Astoria Hotel, Security, 1892-86.
Society of the Plastics Indiany, 1894-86.
Society of the Plastics Indiany, 1894-86.
Society of the Plastics Indiany, 1894-86.
March 25-27.
American Society of Mechanical Engineers

March 25-27.

American Society of Mechanical Engineers,
Instruments and Regulators Division
Conference, Cleveland, March 29-

Conference, Cleveland, March 29-Apr. 2. y of Automotive Engineers, National Aeronautic Meeting, Hotel Commo-dore, New York, March 31-Apr. 3. Society

Conference on Electrically Exploded Wires, sponsored by the Thermal Radiation Laboratory of the Geophysics Research Directorate of the Air Force Cambridge Research Center, Somerset Hotel, Boston, Apr. 2-3.

American Society for Quality Control, Portland Chapter, Oregon Museum of Science and Industry, Portland, Apr. 3-4.

Science and Industry, Portland, Apr. 3-4.
1959 Nuclear Congress, Municipal Auditorium, Cleveland, For information: Engineers Joint Council, 29 West 39th St., New York, Apr. 5-10.
American Welding Society, 1959 Welding Show and 40th Annual Convention, International Amphitheatre and Hotel Sherman, Chicago, Apr. 7-10.
Air Force Association, World Congress of Flight, Las Vegas, New, Apr. 12-19.
Aeronautical Training Society, 17th Annual Meeting, Las Vegas, New, Apr. 12-19.
American Society of Tool Engineers, Annual Meeting, Las Vegas, Apr. 16-17.
American Society of Tool Engineers, Annual Meeting, Las Vegas, Apr. 16-17.
American Society Society, Man-in-Space Conference, Hotel Chamberlain, Hampton, Va., April, 20-22.
Institute of Radio Engineers, Spring Technical Conference on Electronic Data Processing, Cincinnati Section, Engineering Society Bldg., Cincinnati, Apr. 21-22.

Processing, Cincinnati Section, Engineering Society Bldg., Cincinnati, Apr. 21-22.

Institute of Environmental Engineers, 1959
Annual Meeting, La Salle Hotel, Chicago, Apr. 22-24.

American Rocket Society, Controllable Satelitte Conference, Massachusetts Institute of Technology, Cambridge, Apr. 30-May 1.

MAY

MAY

Institute of Radio Engineers, 11th National Aeronautical Electronics Conference, Dayton, Ohio, May 4-6.

Instrument Society of America, 5th National Instrumentation Flight Test Symposium, Seattle, May 4-7.

International Scientific Radio Union, Spring Meeting, Willard Hotel, Washington, D.C., May 5-7.

1959 Electronic Components Conference, Benjamin Franklin Hotel, Philadelphia, May 6-8.

Aviation Writers Association, 21st Annual Meeting and News Conference, Washington and Willard Hotels, Washington, D.C., May 10-16.

Armed Forces Day, Observances scheduled throughout week of May 9-17.

The Society for Experimental Stress Analysis, 1959 National Spring Meeting, Sheraton Park Hotel, Washington, D.C., May 20-22.

Institution of Electrical Engineers, The Radio and Telecommunication Section, Earl's Court, London, England, May 21-27.

American Rocket Society, Institute of the Aeronautical Sciences, American Institute of Electrical Engineers and Hotel, Denver, May 25-27.

Federation Aeronautique Internationale, Annual Conference, Moscow, May 28-31.

American Rocket Society, Semiannual Meet-ing, San Diego, June 8-11. missiles and rockets, March 16, 1959

Coming Mid-May 1959 Second Annual

MISSILE MARKET AND PRODUCT GUIDE

You'll find it pays to tell your complete sales story to the Missile Industry . . . in addition to your free company listing . . . in the mid-May Second Annual MISSILE MARKET AND PRODUCT GUIDE.

Because the Guide (formerly the Missile Market Guide and Directory) contains all the necessary information the buyers in this \$7 billion market need, it is referred to over and over by approximately 30,000 MISSILES AND ROCKETS subscribers who will receive this issue . . . in addition to those missile men who purchase this special issue as a year round buying guide.

Last year's enthusiastic response proved the value of this unique publication to the Missile Industry . . . and once again the Guide will provide such important information as

- · A Missile Purchasing Directory . . . an alphabetical listing of almost 4,000 missile com-
- A Missile Catalogue Section . . . divided into 10 major missile categories with classified listings of all major items that go into a missile.
- · Army, Navy, and Air Force Personnel Organization Charts

 • Directory of Armed Forces Personnel
- · Special Advertisers' Product Index

plus a new section in the 1959 edition

· Glossary of Missile Terms

APRIL 15 CLOSING DATE Place your advertising in a Place your advertising in a publication where missile market buyers seek and find the answers to their buying problems . . in the Second Annual MISSILE MARKET AND PRODUCT GUIDE.

For additional information, contact the MISSILES AND ROCKETS regional advertising manager nearest you.

NEW YORK: 17 EAST 48TH ST., NEW YORK 17, N. Y., PL. 3-1100 ● WEST COAST: 8929 WILSHIRE BLYD., BEVERLY HILLS, CALIF., OL. 5-9161 ● CHICAGO: 139 N. CLARK ST., CHICAGO 2, ILL., CE. 6-5804 ● CLEVELAND: HANNA BLDG., 1422 EUCLID AVE., CLEVELAND, OHIO, PR. 1-2420 • DETROIT: 201 STEPHENSON BLDG., DETROIT, MICH., TR., 5-2555 • FLORIDA: 208 ALMERIA AVE., CORAL GABLES, FLA., HI. 4-8326 • PARIS: 11 RUE CONDORCET, PARIS (9E), FRANCE, TRU 15-39 • GENEVA: 10 RUE GRENUS, GENEVA. SWITZERLAND, TEL: 321044

 ■ LONDON: NORALL & HART, LTD., 28 BRUTON ST., LONDON W. 1, ENGLAND, GR. 8356
 ■ TORONTO: ALLIN ASSOCIATES, 12 RICHMOND ST., EAST TORONTO, CANADA, EM. 4-2001 . MONTREAL: ALLIN ASSOCIATES, 1487 MOUNTAIN ST., MONTREAL, CANADA, VI. 5-6898

MISSILES AND ROCKETS

American Aviation Publications, Inc.

World's Largest Aviation Publishers • 1001 Vermont Avenue, N.W. • Washington 5, D. C. missiles and rockets, March 16, 1959

Missile Ground Support | MOBI

WE TAKE IT FROM CONCEPT TO COMPLETION

Few firms, if any, in this country can offer you the complete capabilities and experience FMC can provide in the field of mobile military equipment. Over the past 17 years, FMC has designed and built more types of military-standardized tracked vehicles than any other company in America. This background of experience is currently being applied to missile ground support equipment projects. Starting at the design concept phase, on through develop-

ment, engineering and production, FMC provides a single source of coordinated responsibility. Also, important savings in time and costs can be effected by using FMC's fully integrated facilities devoted exclusively to defense production. And, contractors know that they can rely on FMC to meet contract delivery requirements — on schedule. For more information contact us, today. Consult with FMC at the initial stage of project planning.

Creative Engineers: Find stimulating challenge at FMC Ordnance Division

FMC'S PROFILE OF EXPERIENCE:

Prime Movers

Transporter

& Power Units

Shipping & Storage Containers

Propellant Handling Systems

Putting Ideas to Work

FOOD MACHINERY AND CHEMICAL CORPORATION

Ordnance Division

Missile Equipment Section 1-B 1105 COLEMAN AVENUE, SAN JOSE, CALIF.

Here is AOMC's Jupiter Contract Breakdown

WASHINGTON—More than two-hundred contractors had a part in producing the modified *Jupiter* IRBM used to send *Pioneer IV* into orbit around the sun.

According to a fact sheet released by the Army Ordnance Missile Command at Redstone Arsenal, Chrysler, the prime Jupiter contractor, furnished engineering services and some hardware although the booster was fabricated by ABMA at Huntsville.

Major Jupiter subcontractors are Ford Instrument Co., guidance and control; and Rocketdyne Div., North American Avlation, propulsion. For this project, Reynolds Metals Co. built the shell of the rotational

Other contractors:

Other contractors:

Adel Precision Products Corp., check values for high pressure air supply, air bearing system and fuel system; Aeronutronic Systems Inc., research on high precision orbit determination; AFR Products, Inc., meter and tuning unit; Aircraft Porous Media Co., filter for hydraulic control system in rocket engine; filter for cooling system; Aircsearch Mfg., absolute pressure regulator, in instrument compartment; Allen Mfg. Co., cap screw for rotational launcher assembly; Aito Scientific Co., tuner; American Lava Corp., heater core for air bearing system. system.

Ampex Corp., recorder and magnetic tape recorders for testing booster components and overall missile flight checkout; Anadite, Inc., conduit, fuel and vent pipes; Apor Heating Corp., thermostats for temperature control coding system; Armstrong Products Co., cement for destructor and adapter assembly; Baidwin-Lima-Hamilton Corp., measuring systems for loads, cells and thrust in testing operations; Beckman Instruments, Inc., frequency meter; Beckman and Whitley, Inc., arming unit in destructor and adapter assembly.

Bendix Aviation Corp., Los Angeles, gas reaction controller; Bendix Aviation Corp., Detroit, reaction controller and rotation machinery; Bendix Filter Division, Madison Heights, Mich., hydraulic filters for control

actuators; Bendix Aviation Corp., Utica, N.Y., high pressure spheres, fiberglass containers for pressuring systems; Benson Mfg. Co., fuel suction connector; Benton Valve Corp., valves for hydraulic and measuring systems; Bomac Labs, Inc., magnetron tube; Bomar Instrument Co., speed changer; Bournes Laboratories, Inc., variable precision resistors used in several electronics systems; D. S. Brown Rubber Co., rubber connection and seals for cluster assembly; Brown Engineering Co., bolts for large access door on aft section; tilt frames for guidance system. cess door on al

guidance system.

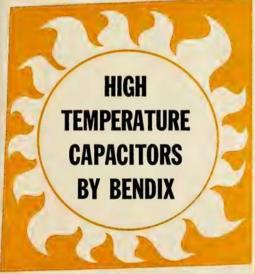
Brush Electronics Co., oscillographs used to record results of flight dynamics study; Burroughs Corporation, computers used in developing data in several ABMA laboratories; Byron-Jackson Tools, Inc., cryogenic pumps, valves and trailers used in testing operation; Cadillac-Gage, air pendulum to level gyro stabilizer platform; Cambridge Corp., cryogenic tanks, pumps, valves and trailers used in testing; Camloc Fastener Corp., structural quarter-turn fasteners for access doors in aft section; Canmon Electric Co., plug for rocket engine modification; J. C. Carter Co., cryogenic pumps, valves and trailers for testing operations; Century Electronics & Instruments, Inc., pressure switches for propulsion system measurements and controls.

Cincinnati Testing and Research Lab-

ments and controls.

Cincinnati Testing and Research Laboratory, sealer for shroud coating; Cherry Burrell Corp., container tests for propulsion system; Chicago Pneumatic Tool Co., high pressure compressors; Chromalax, Inc., heating blanket; Chrysler Corp. Missile Division, quick-disconnect couplings for fuel aliquid oxygen systems; cables and valves in aft and tail sections; Chrysler Corp. Airtemp Division, air-conditioning; C. P. Clare and Co., selector switch to coordinate resolver computer in guidance and control system; Clevite Corp., recorder, oscillograph, and amplifier; Component Parts Co., check valve for fueling system; Communication Measurement Lab, frequency converter.

Consolidated Electrodynamics Corp., lisadic, recording oscillographs, transducers, oscillogram processors, D.C. power supplies, used for testing components and overall missile flight checkout; Cornelius Co., safety valves for air bearing system; Crane Co., cryogenic pumps, valves and trailers; high pressure valves and pipe fittings for testing operations; Cyril Bath, ring, channel and "Z" frames for support of missile's outer shell; Daven Co., attenuator; De Mornay Bonardi Corp., waveguide, mount, coupier, tee, mixer tunes, shorts, flange, stand and screws; Dow Chemical Co., insulators for tall and aft section; E. E. du Pont Co., booster and actuator used in missile's destruction apparatus; D. S. D. Manufacturing Co., toruseals for liquid oxygen system.


system.

Eagle-Picher, batteries for power supply;
Eastern Air Devices, Inc., alternator for spin launcher, a component of cluster speed control system; Edeliff Instrument Co., angle-of-attack instrument for control system; Elastic Stopput Corp., machine nuts for LOX and fuel systems; floating anchor nuts for rotational launcher assembly and instrument compartment; Electro Data Division of Burroughs Corp., digital computers used for stability accuracy determination and analysis of flight dynamics of missile; Electromation Co., micro-miniaturization program device; Eigin National Watch Co., relay; Ensign-Brickford Co., prima cord for destructor and adaptor assembly and for separation of nose and aft sections.

separation of nose and aft sections.

Fairchild Control, potentiometers for velocity computer in guidance system; Fansteel Metalurgical Corp., rectifiers and capacitors for guidance system; Firestone Co. (West Coast Division), radio beacon for tracking of missile; air-bearing gypto for stabilized platform in guidance system; Fenwal Electronics, Inc., thermistor type temperature gages for guidance system; Fenwal Electronics, Inc., thermistor type temperature gages for guidance system; thermostats for air bearing system; Flexonics Corp., flexible hoses in instrument compartment; hoses for hydraulic, air and liquid oxygen in tall section; Flexitalic Gasket Co., toruseals for liquid oxygen and tuel systems; Ford Instrument Co., regulating system, program device and velocity computer in guidance and control assembly; Friden, Inc., transmitter-receiver; Fruehauf Trailer, 5,000-gallon trailer for fuel trans-

(Continued on page 48)

DESIGN FEATURES

Temperature Range . . . -55° to +315°C. Capacitance . . 0.05 to 4.0 uf at 600 VDC. Voltage Range . . . 600 V to 3000 V per section. No Voltage Derating, Low Capacitance and Power Factor Variation, Environmental Resistant, Hermetically Sealed, Rugged Construction, Nonstrategic Materials, Minimum Size and Weight, High Altitude Operation.

The E-315 capacitor offers proven stability of operation over the temperature range of -55° to +315° Centigrade* with no voltage derating and low capacitance variation. Of rugged hermetically sealed construction and nonstrategic materials, this capacitor is built for high altitude and severe environmental operation.

This nonpolarized capacitor is available in a variety of sizes in a capacity range of from 0.05 to 4.0 microfarads at 600 VDC. It is also available in higher voltage ratings. Performance data and operating characteristics are given in Technical Bulletin SL-61 which is supplied upon request.

> *Confirmed by qualification test of 1000 hours at 100% rated voltage over ambient temperature range of -55° to +315° C.

Canadian Affiliate: Aviation Electric Ltd., 200 Laurentien Blvd., Montreal 9, Quebec, Export Sales and Service: Bendix International Division, 205 East 42nd St., New York 17, N.Y

AVIATION CORPORATION

Scintilla Division

fer; Futurecraft Valve Corp., valves, rings and plugs for fuel system.

Garlock Packing Co., grease and air pressures and plugs for fuel system.

Garlock Packing Co., grease and air pressure seals for rotational launcher assembly; U.S. Gauge Co., manifold pressure gage for main valve box; General Electric Computer Center, operates part of Computation Laboratory, ABMA, where general development and trajectory computations were accomplished; General Electric, transistors and semiconductors for telemetry, transmitter and data equipment; GE. Fort Wayne, Ind., DC motor for spin launcher; General Motors Corp. (New Departure Division), ball bearings for rotational launcher assembly; General Radio Co., miscellaneous electronic components; G. M. Giannina and Co., pressure transducer to measure propulsion system pressures; accelerometers to measure longitudinal acceleration of the missile; Gilfillian Brothers, Inc., radio beacon for racking of missile for flight instrumentation; Globe Industries, timer, DC motor and gear box assemblies used in upper stages of missile; electro-mechanical actuators for spatial attitude control system; Greer Hydraulic, Inc., hydraulic accumulators for Jupiter hydraulic system.

Handley Electronics Inc., variable presented accumulators and presented accumulators.

draulic, Inc., hydraulic accumulators for Jupiter hydraulic system.

Handley Electronics Inc., variable precision resistors used in electronic control systems; Hammel-Dahl, high pressure valves and fittings used in testing operations; Hayes Aircraft Corp., flame shields used to protect booster and components; Heath Corp., Heathkits for flight simulation studies; Helipot Corp., potentiometers for velocity computer in guidance system; Heli Coil Corp., threaded inserts used at missile handling points; Tom Henkel, ring frames for support of outside skin; Henry Vogi Machine Co., Inc., high pressure valves and pipe fittings used in testing; Hufford Corp., knuckle, ring, channel and "2" segments used to support outside skin and tank construction; Herrick L. Johnston, Inc., cryogenic tanks, pumps, valves and trailers, Hewlett Packard Co., counter and recorder, voltmeter and oscillator; Hoffman Electronics Corp., Evanston, Ill., transistors and semiconductors for missile attitude measuring adapters; Huck Mfg. Co., bolts and blind rivets for shroud and aft section assembly; Humphrey, Inc., potentiometers for Jupiter engine gimbal actuators; Hydraulic Research, servo valve for rocket engine modification; Hydromatics, Inc., liquid oxygen replenishing vent for transfer system; valve for cooling system in Instrument compartment.

Industrial Tectronics, ball shaft assembly: Ingersoll-Rand Co., high pressure compressor for testing; International Business Machine Corp., supplier and servicer of computers and auxiliary equipment used in computing of data on the project; Joy Mig. Co., blowers for cooling instrument com-

CLASSIFIED

Missile Photos—For your office, den or collec-tion. We produce B&W and color prints slides, murals, and display photographs. For catalog and sample slide send 35¢ to— Camber Company, Box 1051, Cocca, Florida.

HELP WANTED

ENGINEERS

Splendid opportunities with nationally known, progressive, growing company, with exceptional opportunities for ad-vancement.

Cryogenic Development and Research

3 to 10 years experience in research laboratory or development work. Experi-enced in theoretical and practical anal-ysis of heat transfer, vacuum tech-niques, hydraulics and thermodynamics. Several opportunities in cryogenic de-velopment laboratory.

Cryogenic Process Engineer

Minimum of 10 years experience in design of liquefaction and fractional distillation of air or related fields. Opportunity exists in design and analysis of cryogenic process cycles. Salary commensurate with experience. Send resumes to Manager, Gas Engineering and Development. ing and Development.

AIR REDUCTION SALES CO.

181 Pacific Ave. Jersey City, N.J. partment; Kerper Products Co., check valve for lube oil drain; Keystone Carbon Co., thermistor for instrument compartment cooling system; Kirkhill Rubber Co., rubber connection seals for nose cone connection; Kearfott Co., Inc., rate gyros and servo components and amplifier for guidance and control system; servo components used in flight simulation studies; Linair Corp., teenut for instrument compartment panel.

nut for instrument compartment panel.

Linde Air Products Co., liquid oxygen
and nitrogen; Leeds and Northrop Co., electronic strip-chart recorders used in testing.

W. O. Leonard, Inc., regulators air flow;
Lockheed Aircraft Corp., camera equipment.
Lord Mfg. Co., shock mount in instrument
compartment cooling system; Manotta Valve
Corp., solenoid valve used in control of air,
flow; valves for propulsion system and instrument compartment Magnetic Research
Corp., magnetic amplifier for temperature
measurements; Magmar Products Co., Inc.,
clamps used in liquid oxygen and fuel systems, instrument compartment cooling system; Mark's Oxygen Co., Inc., liquid oxygen.

Meinar Inc., transponder used in missile-

tem; Mark's Oxygen Co., Inc., liquid oxygen.

Melpar, Inc., transponder used in missileborne radar tracking beacon; Metron Instrument Co., contractor for rotational
launcher assembly; Micro Switch, limit
switches for spatial attitude control system;
Microswitch Division of Minneapolis-Honeywell, microswitch used in fuel transfer
system; Microswave Associates, Inc., varactor
diode; Midland Mfg. Co., frequency control
components for tracking station built by
ABMA; Minnesota Mining and Manufacturing, sealer coating for shroud; sealing compounds and insulation tape for aft section;
Minneapolis-Honeywell, transistors for attitude measuring and control; MinneapolisHoneywell Regulator Co., electronic recorder; Mooga Valve Co., Inc., linear actuators
and valves for guidance and control system;
Modern Industrial Plastics, seals and gaskets for liquid oxygen, hydraulic and oil
system.

Motorola, Inc., telemeter antennae; flow meter adapter for propulsion system; Mc-Kay Tool and Engineering Co., explosive bolts for nose cone separation; Neptune Meter Co., flow meter and seal for fuel transfer system; New York Air Brake, hydraulic pumps in several areas of missile and ground support equipment; Noble Norman, actuator and nozzle assembly for spatial control system; Norda Microwave, attenuator; North American Aviation, regulator and coupling on liquid oxygen and spatial attitude control systems; Omega Labs, Inc., termination and waveguide attenuator; On-Mark Couplings, couplings for fuel system.

fuel system.

R. H. Osbrink Mfg. Co., missile antennae; Owens-Corning Co., fiberglass for rocket engine modifications; Parker Aircraft Co., check valves for hydraulic system; Parker Appliance Co., restrictor check for hydraulic control system; reducers and elbows for pneumatic systems; Parker Hannifin Corp., fittings for liquid oxygen, fuel and pneumatic systems; Philbrick Corp., amplifiers for guidance and control; Philoc Corp., transistors and semiconductors for telemetry, transmitter and data equipment; Perkin-Elmer Corps., venistats used in analog computer simulation of missile flight dynamics. dynamics.

dynamics.

Permanent Filter Corp., filter for high Pressure air supply; PIC Design Corp., gears used in coordinate resolver computer; Polytechnic Research and Development Co., amplifier, bridge, generator meter, and crystal mount waveguide; Potter Aeronautical Corp., flowmeters for liquid oxygen and fuel; Potter Aeronautical Corp., frequency converter; William Powell Corp., frequency converter; William Powell Co., pumps and valves for testing; Precision Equipment Co., check valves for instrument compartment cooling system; Precision Rubber Products, gaskets for engine modification; Protective Closures, Inc., caps and plugs for fuel system; Purolator Products Co., oil hydraulic fluid filters; Quester Ccrp., endless hose.

Raytheon Mfc. Co. transistors and semi-

fluid filters; Quester Ccrp., endless hose.

Raytheon Mfg. Co., transistors and semiconductors for telemetry and transmitter
equipment; Radio Engineering Corp., receiver
set; Reside Corp., flexible hoses for hydraulic, liquid oxygen, fuel and preumatic
systems; Reynolds Industries, antenna
mount and telemetering in nose section;
Robinson Aviation Inc., shock mount vibration isolators to measure propulsion system
pressures; Rosan, Inc., threaded inserts for
rotational launcher assembly; Renan &
Kunzl, Inc., liquid oxygen/nitrogen container; Arthur C. Ruge Associates, Inc., resistance type temperature gages for temperature measurement; Scientific-Atlanta,
Inc., pattern platter; Simons Fastener
Corp., quick fastener for instrument compartment; Servo-Mechanism, Inc., computer
(liquid oxygen level indicator); A. O. Smith
Corp., high pressure vessels for testing
operation. Corp., hi

Southwestern Industries, pressure switches to regulate fuel tank pressure; valves for fuel and air systems; Southwest Products Co., bearings for booster roll control; Spectrol Electronics of Carrier Corp., potentiometers for spatial control system; Spincraft, Inc., bulkhead for tank section; Spitz Laboratories, Inc., lunar flight trajectory models; Stathem Laboratories, accelerometers for attitude measuring control; Systems, Inc., antenna; Texas Instruments, Inc., transistors and semiconductors for telemetry and guidance and control equipment.

Thiokol Chemical Corp., small rocket motors for booster; Thermo Form, bulkhead, component of tank assembly; H. I. Thompson Co., fiberglass flame shields and insulators in tall section; Transistron, transistors and semiconductors for telemetry and transmitter equipment; Tube Turns, Inc., high pressure valves and pipe fittings for testing of booster; Turbocraft Co., cryogenic pumps, valves and trailers for testing operations; United States Rubber Co., drive belts for rotational launcher; U.S. Steel Corp., high pressure vessels for testing operations; United Transformer Co., transformers and inductors for guidance and control system; University of Illinois, study of radiometric missile tracking; Util ty Metals Products, rings, doors and door frames for booster.

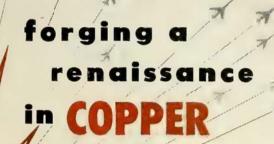
Varian Associates, Inc., Klystron; Vulcan Trailer Mfg. Co., modification of semi-trailer; Wallace Barnes Co., springs to modify valves and other components; Walter Kidde Co., filter for instrument compartment cooling system and high pressure air supply; Wallace O. Leonard, regulator for air bearing system; Weinschel Engineering Co., termination attenuator and tunes; W. M. Whittaker Co., air flow control valve; Wiancko Engineering Co., transducer mounts to measure propulsion system pressures; E. B. Wiggins Oli Tool Co., Inc., guick disconnect apparatus and couplings for hydraulic, liquid oxygen and fuel systems; Franklin C. Wolf Co., Inc., seals and gaskets for aft section assembly; Zenith Radio Corp., receiver for command-destruction signal.

Bomarc Vendors

Boeing List Shows 35 Major Suppliers

SEATTLE-A breakdown of Bomarc subcontractors has been furnished m/r by Boeing Airplane Company. The vendors and their products are:

Aerojet-General Corp., boost rocket motors; American Gyro Division, rate gyros; American Machine & Foundry Co., weapon support equipment; Armco. 17-7PH steel; Bendix Aviation Corp. instrumentation beacon and inverter.


Scientific Bill Jack Scientific Instrument Co., motors; Brunswick-Balke-Collender Co., radomes; Blount Brothers Construction Co., weapon support equipment; Burns & Roe, Inc., ground support equipment; Cadillac Gage Co., servo valves; Cushing & Nevell, illustrated parts breakdown; Dalmo-Victor, drive assemblies. Instrument

Farnsworth Electronics Co., operation test equipment and electrical launching equipment; Federal Telephone & Radio Co., GAT amplifiers; Food Machinery & Chemical, weapon support equipment; Foote Brothers Gear and Machine, gear boxes; Kaiser Metal Products, Inc., fuel tanks; Leer, Inc., coordinate converter and data link receiver.

Librascope, Inc., transformer-rectifier; Minneapolis-Honeyweil Regulator Co., weap-on support equipment; Moogi Valve Co., Inc., valves, Motorola, Inc., guidance beacon and data link decoder; Radio Corporation of America, radar; Southgate Aluminum and Magnesium Co., chassis assemblies.

Stewart-Warner Corp., cooling assembly; Taylor Forge & Pipe Works, forgings; Tele-chrome Mig. Co., transmitters; Texas In-struments, Inc., telemeter; Thompson Prod-ucts, Inc., switches; United Control Corp.,

Varian Associates, Inc., kylstron tubes and transmitters; Westinghouse Electric Co., homing radar and control equipment; West-vaco Chlor-Alkali Division, UDMH fuel; Whittake Gyro., rate gyros; and Yardney Electric Corp., batteries.

Forging "new metals" has been routine procedure at Wyman-Gordon for 75 years. Contrasting the modern marvels of metallurgical development is the oldest metal employed by man—copper. Here you see the largest copper closed die forging ever produced—a Re-entry Shield weighing 1875 pounds (67-1/2" x 21-1/2"). Unexcelled know-how, with the availability of the most modern forging equipment, assures the ultimate in forging quality to meet the constantly expanding demands of progress—man's quest for greater speeds and power in his unending exploration farther and farther into yesterday's unknown.

WYMAN-GORDON COMPANY

Established 1883

FORGINGS OF ALUMINUM . MAGNESIUM . STEEL . TITANIUM

WORCESTER 1, MASSACHUSETTS
HARVEY, ILLINOIS • DETROIT, MICHIGAN

THE BETTMANN ARCHIVE

UNUSUAL CAREERS FOR

AERONAUTICAL ENGINEERS

Challenging and rewarding career positions are now open for aero-nautical engineers with knowledge and imagination. They will participate in the development of new concepts for advanced operational data processing systems.

Ph.D. with a background in aircraft instrumentation, especially air speed and altitude measurements. Must have a thorough knowledge of servo-mechanisms and electronics, plus a demonstrated creative talent. Flight test experience is desirable.

M.S. with a minor in mathematics and 2 years' experience in the following areas: evaluation of airborne systems, both digital and analog; navigation techniques, including inertial navigation; aerodynamics; data reduction; photogrammetry. Must be capable of analyzing flight test data and handling systems analysis. Will be required to solve problems in spherical trigonometry and photogrammetry.

B.S. with 2 to 4 years' experience in installation of electronic and electromechanical equipment in aircraft. Aircraft company experience is desirable.

B.S. with 2 to 4 years' experience in flight testing of complex electronic equipment, preferably in high performance air vehicles.

PARALLEL OPPORTUNITIES. Both technical and administrative engineering careers offer parallel advancement opportunities and rewards at IBM. You will enjoy unusual professional freedom, comprehensive education programs, the assistance of specialists of diverse disciplines, and IBM's wealth of systems know-how. Working independently or as a member of a small team, your individual contributions are quickly recognized and rewarded. This is a unique opportunity for a career with a company that has an outstanding growth record.

FOR DETAILS, write, outlining your background and interest, to:

Mr. R. E. Rodgers, Dept. 604C3 IBM Corporation 590 Madison Avenue New York 22, N. Y.

IBM

Advertisers' Index Aeronca Mfg. Corp. 35 Allison Div., General Motors Corp. Agency—Kudner Agency, Inc. 3 Avco Mfg. Corp., Crosley Div. Agency—Benton & Bowles, Inc. Bendix Aviation Corp., Bendix Systems Div. Scintilla Div. Agency-MacManus, John & Adams, Inc. Bristol Co., The Agency—James Thomas Chirurg Co. Butler Mfg. Co. 19 Agency—Aubrey, Finlay, Marley & Hodgson, Inc. Chance Vought Aircraft, Inc. Dresser Industries, Inc. Agency—The McCarty Co. 10 Erco Div., ACF Industries, Inc. Agency—Conti Adv. Agency, Inc. 18 Food Machinery & Chemical Corp. Agency—The McCarty Co. Hallamore Electronics Co., a Div.-8 Harnischfeger Corp. Agency—Hoffman, York, Paulson & lach, Inc. 2 Janitrol Aircraft Div., Surface Combustion Corp. Agency—Odiorne Industrial Adv., Inc. 36 Marman Div., Aeroquip Corp. 26, 27 Agency—The Fred M. Randall Co. 9 44 15 Stephens-Adamson Mfg. Co., Spherco Bearings & Rod Ends Div. Agency—Connor Associates, Inc. 40 52 32 United Aircraft Corp., Norden Div. Agency—Lennen & Newell, Inc. 14 Vickers, Inc., Div.-The Sperry Rand Corp. Agency—Witte & Burden 12 Vickers, Inc., Div.-The Sperry Rand Corp. Agency—G. F. Sweet & Co. EMPLOYMENT SECTION General Electric Co. Agency—Deutsch & Shea, Inc. International Business Machines Corp. 50 Agency-Benton & Bowles, Inc.

ENGINEERS/EE/ME/AE

FOCAL POINT FOR CAREERS IN SYSTEMS ENGINEERING

General Electric's New Defense Systems Dept.

From many diverse disciplines in engineering and the sciences, capable men are coming together to form the nucleus of the new Defense Systems Department—an organization devoted exclusively to conceiving, integrating and managing prime defense programs, such as:

DYNA-SOAR

and other highly classified systems which cannot be listed here.

Whether you are a systems engineer now or not, the inauguration of this new department presents a rare opportunity for bringing your own career into sharp focus in systems engineering.

Immediate assignments in

SYSTEMS PROGRAM MANAGEMENT
WEAPONS ANALYSIS
WEAPONS SYSTEMS INTEGRATION
ELECTRONICS • DYNAMICS
COMPUTER LOGICAL DESIGN
PRELIMINARY DESIGN
APPLIED MATHEMATICS
ADVANCED SYSTEMS DEVELOPMENT
SYSTEMS EVALUATION
THEORETICAL AERODYNAMICS

Please direct your inquiry in strictest confidence to Mr. E. A. Smith, Dept. 3-G.

DSD

DEFENSE SYSTEMS DEPARTMENT

GENERAL SELECTRIC

300 South Geddes Street Syracuse, New York

UNUSUAL CAREER OPPORTUNITIES FOR QUALIFIED SCIENTISTS AND ENGINEERS . . . WRITE AVCO/CROSLEY TODAY.

Crosley

Avco's Crosley Division is a major contributor to the production of one of the country's most important air-to-air weapons, the Hughes Falcon missile. Crosley's manufacturing facilities, its skilled personnel and its willingness to see the job through, on schedule and according to specification, again has won it a contract to produce stabilizer and flipper assemblies for the Falcon.

For the same reasons—skill, quality, and willingness to meet difficult schedules—Crosley Engineering today is doing important work on another missile, the U. S. Navy's Polaris.

Crosley has to its credit other unique tasks that assisted in the development of *Jupiter*, *Sergeant* and *Redstone*.

CROSLEY'S COMPLETE CAPABILITIES

Together with its associated Avco Divisions, Crosley provides facilities and personnel for:

- Weapons systems management from initial concept to production.
- Production and manufacturing for missiles and aircraft systems.
- Research, development and engineering of: communications, air traffic control systems, telemetering, automatic test and support equipment, ground handling equipment and logistics.

For additional information, write to: Vice-President, Marketing-Defense Products, Crosley Division, Avco Manufacturing Corp., Cincinnati, Ohio

THIS IS THIOKOL

serving industry and the national defense

In modern plants strategically situated throughout the country, Thiokol is making many significant contributions to the art and science of rocketry.

By developing new and better propellants (both solid and liguid)-by designing and building improved power plants to utilize these fuels-by furnishing essential support equipment Thiokol helps to strengthen the nation's defenses, helps push back our spatial frontiers.

Engineers, Scientists: perhaps there's a place for you in Thiokol's expanding organization. Our new projects present challenging problems and a chance for greater responsibility.

TRENTON

BRISTOL

DENVILLE

kickol . CHEMICAL CORPORATION

TRENTON, N. J. ELKTON, MD. HUMTSVITLE, ALA. MARSHALL, TEXAS

MOSS COINT, MISS. BRIGHAM CITY, UTAH - DENVIELE, N. J. - BRISTOL, PA.

Registered trademark of the Thioxol Chemical Corporation for its liquid polymers, rocket propellants, plasticizers and other chemical products.