RAKETENFLUG

MITTEILUNGSBLATT DES RAKETENFLUGPLATZES BERLIN.

Die Magdeburger Pilotenrakete!

Die Verhandlungen mit der Stadt Magdeburg sind am 27. Januar 1933 zum Abschluß gekommen. Damit ist der Bau der ersten bemannten Rakete, die in Zukunft die Magdeburger Pilotenrakete heißen wird, sichergestellt. Ein neuer Abschnitt in der Geschichte des Raketenfluges ist damit eingeleitet. Dies veranlaßt uns, auf die Magdeburger Verhandlungen einmal im einzelnen einzugehen.

Im August 1932 besuchte uns Herr Ingenieur Franz Mengering aus Magdeburg. Herr Mengering wollte sich über den augenblicklichen Stand der Raketenarbeiten informieren unter Berufung auf die Tatsache, daß er bereits im Jahre 1928 einen Vorschlag gemacht hatte, mit Raketen das Kopernikanische Weltbild als unrichtig zu beweisen und die sog. Neupertsche Theorie der Erdhohlwelt als allcin richtig hinzustellen. Gelegentlich dieser Aussprache kam es zu einer erregten Diskussion zwischen den anwesenden Herren Mengering, Nebel, Riedel und v. Braun, welche zu einer einstimmigen Ablehnung der Erdhohlwelt-Theorie durch die Herren des Raketenflugplatzes führte. Aber man war sich darüber einig, daß es wohl am besten wäre, einen Beweis mit Raketen anzuführen, wic ihn Herr Mengering bereits im Jahre 1928 vorgeschlagen hatte.

Herr Mengering nahm nun Gelegenheit, sich über die bisher geleisteten Raketenarbeiten ins Bild zu setzen und gleichzeitig mit uns gemeinsam eine

Kalkulation aufzustellen, die als Grundlage den Bau einer Flüssigkeitsrakete für 5000 km Steighöhe haben sollte. Diese Steighöhe ist nach der Neupertschen Theorie die Entfernung des Mondes von der Erde.

Bei dieser Kalkulation mußten wir feststellen, daß immerhin erhebliche Entwicklungskosten aufzubringen wären, jedoch kam man überein, daß die Aufbringung derartiger Kosten auf einem anderen Wege gesucht werden müßte.

Das Raketenproblem hat einen besonderen Vorzug. Es ist populär, d.h. Raketenarbeiten können dazu benützt werden, um durch Vorführungen das Interesse der Allgemeinheit zu erwecken und so durch Erhebung von Eintrittsgeldern Geldmittel füssig zu machen.

Diese Erwägung führte schließlich zu der Oberlegung, ob beim heutigen Stand der Raketentechnik der Bau einer bemannten Flugrakete möglich sei. Auf jeden Fall einigte man sich bereits im August dahingehend, einen Versuch zu machen, den Start der ersten bemannten Flugrakete als Werbemittel der Stadt Magdeburg zu empfehlen und zu versuchen, zum Bau dieser Rakete auf dem Kreditwege Geld zu beschaffen.

Schon die ersten Besprechungen, die Herr Ingenieur Mengering mit den maßgebenden Behörden der Stadt Magdeburg, dem Magistrat, dem Polizeipräsidenten, dem Luftschutzoffizier u. a., führte, ergab, daß man dem Projekt des Starts der ersten bemannten Rakete ein außerordentliches Interesse ent-

Abb. 1 zeigt das Modell der Magdeburger Pilotenrakete. Der Raketenmotor verbraucht pro Sekunde $5,1 \mathrm{~kg}$ Treibstoffe und leistet einen RUckstoß von 750 kg . Er liegt in der Flugrich. tung vorne, so daß die Auspuffgase den Brennstofftanks entlang strömen. Die Hitze der Feuergase betrăgt etwa 2000 Grad und wird durch eine besondere im Innern der Tanks angebrachte Kuhlung unwirksam gemacht. Die Gesamthöhe der Rakete beträgt 8 m , der grobste Durchmesser 1 m . Die Brennstoffe nehmen mehr als die Halfte des unteren Teils der Rakete ein. Am weitesten unten liegt dieKabine for den Raketenpiloten
gegenbrachte. Es unterlag keinem Zweifel, daß eine derartig sensationclle Raketenvorführung eine gewisse Ankurbelung der Wirtschaft der Stadt Magdeburg darstellen könnte, demgegenüber cin nicht zu großer Geldbetrag kein allzu großes Risiko bilden würde.

Inzwischen wurden mit allem Iiifer dic Berechnungen und Konstruktionen dieser ersten bemannten Rakete durchgeführt und die Kalkulation für die auftretenden Kosten festgelegt. Im augenblicklichen Stadium der Raketentechnik war dieses schon keine leichte Aufgabe.

Schon am 8. Oktober 1932 fand im Magdeburger Hof in Magdeburg eine grundlegende Besprechung statt, an der prominente Persönlichkeiten der Stadt Magdeburg, u. a. der stellvertretende Regierungspräsident v. Berthold, der Polizcipräsident Freiherr von Nordenflychr, der Kommandant der Reichswehr Oberst Förstel, Herr Stadtrat Dr. Klewitz, Herr Oberregierungsrat Dr. Lohmann und der Luftschutzoffizier Major Angerstein sowie der Kommandeur der Schutzpolizei Oberst Baer, teilnahmen. Bei dieser Unterredung brachte man unserem Projekt ein außerordentliches Interesse entgegen und schuf su die erste Grundlage für den Start der Magdeburger Pilotenrakete.

Bei den weiteren Verhandlungen erwies es sich als nötig, für den Bau der Magdeburger Pilotenraketc einen Betrag von RM 2 ; 000.-aufzubringen, ferner für die Organisation des Raketenflugtages, im Rahmen dessen die erste bemannte Rakete steigen sollte, einen weiteren Betrag von RM is 000.-, also insgesamt RM 40000.-.

Diesen Betrag sollte die Magdeburger Stadtbank als Kredit auszahlen, wenn sich in Magdeburg Behörden, Großfirmen und Personen finden ließen, die für größere oder kleincre Beträge die Bürgschaft übernchmen würden. In mühevollcr Kleinarbeit hat Herr Mengering diese schwierige Aufgabe gelöst und folgende Bürgen gewonnen:

Die Magdeburger Straßenbahugesellschaft stiftete einen Betrag von RM soo.--, so daB für die Organisation des Unternehmens noch ein Betrag von RM sooo.- fehlt, der noch beschaft werden muß.

Der Vertrag selbst mußte verschiedentlich abgeändert werden und erst nach dreimunatiger intensiver Arbeit konate er am 27. Januar 1933 unterzeichnet werden.

Die Unterzeichnung des Magdeburger Vertrages bedeutet eine neue Wendung auf dem Gehicte unserer Raketenarbeiten, welche inzwischen mit großer Encrgie aufgenommen wurden, um so mehr, als schon in der Zwischenzeit

Abb. 2 zeigt den $7 / 250 \mathrm{~kg}$ Raketenmotor am neven Raketenprufstand. Die Tanks sind bei der Versuchsanordnung links und rechts vom Motor angeordnet

zahlreiche Versuche, die insbesondere das neue Material betrafen, gemacht werden konnten. Insbesondere mußte die gesamte Prüfanlage umgebaut und vergrößert werden, neue und bessere Maschinen aufgestellt und in Betrieb genommen werden. Auch die Werkzeuge, insbesondere die Spezialwerkzeuge für den neuen und größeren Raketenmotor, mußten sofort hergestellt werden.

Zunächst ist der Bau einer Serie von fünf Raketenmotoren unseres Typs $1,7 / 250$, d. h. $1,7 \mathrm{~kg}$ Betriebsstoff bei 250 kg Rückstoß, vorgesehen, ferner die Herstellung eines Raketenmotors $5,1 / 750 \mathrm{~kg}$, d. h. 5 kg Betriebsstoff bei 750 kg Rückstoß. Für diese neuen größeren Motore mußten die gesamten Spezialwerkzeuge, insbes. Schweißwerkzcuge, hergestellt werden. Diese großen Raketenmotore erfordern einen neuen Prüfstand, der mit neuen Registrier- und Meßvorrichtungen ausgestattet werden muß. Alle diese Arbeiten sind schon seit Monaten vorbereitet und konnten nach Vorhandensein der ersten Geldmittel umgehend in Angriff genommen werden. Besondere Schwierigkeiten machte die Lieferung des verwendeten Spezialmaterials, das erst nach langen Verhandlungen mit den betreffenden W'erken in Auftrag gegeben werden konnte.

Wir haben nunmehr die Aufgabe, den Raketenmotor 1,7,2 50 zum cinwandfreien Arbciten zu bringen. Gleichzcitig die Entwicklungsarbeiten am 5, $1 / 750$

Raketenmotor durchzuführen gemäß den Erfahrungen am kleineren Motor. Dann folgen einige Starts von Flüssigkeitsraketen $1,7 / 250$, die eine Brennzeit von 30 Sekunden und eine Steighöhe von etwa 8000 Metern erreichen sollen.

Von diesen $1,7 / 250$ Raketen werden zwei Stück hergestellt, mit je zwei Reservemotoren, da sich herausgestellt hat, daß nach einer gewissen Betriebsdauer eine Strukturänderung des Brennraummaterials eintritt. Die zulässige Gesamtbrenndauer bei den von uns verwendeten Materialien beträgt etwa 180 Minuten. Die Auswechslung der noch völlig intakten Raketenmotore erfolgt lediglich aus Gründen der Betriebssicherheit, die bei der ersten bemannten Rakete natürlich die entscheidende Rolle spielt. Später wird es möglich sein, durch entsprechende Nachbehandlung der verwendeten I.eichtmetalllegierungen alle gewünschten Eigenschaften zu erzielen, wobei uns die außerordentlich hohe Entwicklungsstufe der deutschen Leichtmetallindustrie zugute kommt.

Dic für den Start der Magdeburger Pilotenrakete zu leistende Hauptarbeit bezieht sich in erster Linie auf die Weiterentwicklung der Raketenmotore, zumal die Tankherstellung und günstigste Formgebung einen gewissen Abschluß erreicht haben. Die oft geübte Kritik an der Formgebung unserer

Abb. 3 zeigt den gesamten Prufstand im wesentlichen als eine grobe Waage, an dessen einer Seite die Flussigkeitsrakete angebracht ist. Die Ruckstoß-Messung erfolgt durch ein auf der anderen SeiteangebrachtesRegistrierDynamometer der Fa. Schăfer \& Budenberg, Magdeburg

Flüssigkeitsraketen entsteht aus Unkenntnis der verbrennungstechnischen Eiffordernisse. Wenn wir den Hauptmaßstab unserer Kritiker zugrunde legen wollten, nämlich die aerodyna misch richtige Formgebung, so würden wir auch zu anderen Formen gelangen. Im augenblicklichen Entwicklungsstadium ist die Formgehung ein Kompromiß aus der verbrennungstechnischen und der flugtechnischen Scite des Problems, wobei die verbrennungstechnischen Bedenken bevorzugt behandelt werden.

Neue wertvolle Erfahrungen wurden inzwischen bei der Herstellung der Hähne und Ventile gesammelt und bei den Neukonstruktionen verwendet. Neues Dichtmaterial, neues Isoliermaterial und sonstige Kleinigkeiten gehören zur taglichen Entwicklungsarbeit. Mir Befriedigung kann aber festgestellt werden, daß die Schwierigkeiten beim Bau der großen Raketenmotore wesentlich geringer sind als bei den kleinen Motoren.

In Magdeburg selbst wird eine großzaigige Werbeaktion eingeleitet. Gilt es doch, Vorarbeit zu leisten für den Raketenflugtag, um eine möglichst große Zahl von Personen an den Startplaz zu bringen. Nelen öfientlichen Vortrigen über das gesamte Raketenproblem ist beabsichtigt, Vorführungen von großen Raketenmotoren und Starts größerer Flüssigkeitsrakeren durchzuführen, wie wir dies bereits im Jahre 193 I im kleinen auf dem Raketenflugplatz in Berlin ausgeführt haben.

Der Raketenfugtag in Magdeburg soll zu einer großangelegten Werbung für das gesamte Raketenflugproblem ausgebaut werden. Fs sollen dort alle Arten von Raketen, insbesondere Pulverraketen, Schiffsrettungsraketen, Photoraketen usw., außerdem ein Pulverraketenauto nach Valier 1928, kleine und große Raketenmotore und schließlich Flüssigkeitsraketen verschiedener Art gezeigt werden. Bei dieser Gelegenheit wird auch versucht werden, einen Höhenrekord für Raketen aufzustellen. Zu diesem Zweck wird die 2. Pilotenrakete statt der Bemannung mit Brennstofien versehen.

Die Brenndauer der Rakete verlängert sich dadurch von 20auf 4 S Sekunden und könnte damit eine Steighöhe von etwa 18000 m erreicht werden. Mit dem Start der Magdeburger Pilotenrakete als der ersten bemannten Rakete soll dieser Raketenfugtag seinen Ilöhepunkt erreichen.

Es unterliegt keinem Zwcifel, daß im Erfolgsfalle das ganze Raketenproblem endlich in ein anderes Fahrwasser kommt. Schon sind Verhandlungen mit Großstädten des In- und Auslandes im Gange, die das Ziel haben, den Raketengedanken in weiteste Kreise zu tragen und gleichzeitig die Geldmittel aufzubringen, die für die weitere Durchführung der wissenschaftlichen Forschungsarbeit an der Rakete unerläßlich sind.

Sind diese Geldmittel aber vorhanden, so ist der Weg zur Post- und Fernrakete frei und damit dic Grundlage gelegt $2 \mathbf{u}$ cinem W'erk, das die 'Technik der nächsten Jahrzehnte beherrschen wird.

[^0]
Wege zur Raumschiffahrt

Von Prof. Herrnann Oberth. 3. Auflage. 442 Seiten, 159 Abbildungen. 4 Taf. Gr.-80. 1929. Brosch. M. 15.50, Leinen M. 18 .-

Die Erreichbarkeit der Himmelskörper

Untersuchungen über das Raumfahrproblem
Von Dr.-Ing. W. Hohmann. 93 Seiten, 28 Abbildungen. Gr.-80. 1925. M. 4.-

Raketenfahrt

> Von Max Valier. 6. Auflage. 248 Seiten: 72 Abbildungen. $8^{0} .1930$. Ieinen M. 4.80

R.OLDENBOURGIMÜNCHEN 1 UND BERLIN

Soeben erschienen!
mit 50 Bildern, darunter:

Die erste bemannte Flugrakete

Preis M. 1.-, kartoniert

[^1] Berlin-Reinickendorf. Fernsprecher: D 9 Reinickendorf 46i7. Postscheckkonto: Raketenflugplatz Nr. 6159 :

[^0]: Unsere Bilder: Vergleiche hierzu die Ausführungen im , Raketenflug", herausgegeben von Dipl.-Ing. Rudolf Nelel. Berlin-Rcinickendorf. Preis RM 1.-.

[^1]: Herausgeber: Raketenflugplatz Berlin des Vereins für Raumschiffahrt e. V. Verantwortlich : Dipl.-Ing. Rudolf Nebel,

