Статьи в журнале «Scientific American» 2025 г.

  1. Мориба Джа. Как утилизировать космический мусор (Moriba Jah, How to Recycle Space Junk) (на англ.) том 332, №2 (февраль), 2025 г., стр. 28-33 в pdf - 2,78 Мб
    "Десять лет назад человечество запускало в космос около 200 объектов в год. Сейчас мы запускаем более 2600, и нет никаких перспектив замедления темпов. Стремительное расширение деятельности человека в космическом пространстве привело к тому, что околоземная орбита заполнилась космическим мусором, от вышедших из строя спутников до использованных частей ракет. (...) В настоящее время на орбите Земли находится более 25 000 предметов, которые можно отследить, сделанных человеком, размером более 10 сантиметров. Чем больше мы там размещаем, тем больше вероятность того, что куски мусора (...) ударятся о работающие космические аппараты, создавая еще более опасный мусор. (...) Орбитальное пространство - это ограниченный ресурс, и оно быстро расходуется несколькими организациями, в частности SpaceX, OneWeb и Amazon Project Kuiper. SpaceX, например, владеет и управляет большинством всех работающих спутников, и компания планирует запустить еще десятки тысяч спутников для обеспечения глобального широкополосного доступа в Интернет. Аналогичным образом, Amazon планирует развернуть 3236 спутников для своей широкополосной сети. Если мы будем продолжать в том же духе, орбитальное пространство станет непригодным для использования, особенно самый популярный регион - низкая околоземная орбита (НОО), высота которой достигает 2000 километров. (...) Я считаю, что мы должны оставить в прошлом нашу "линейную экономику пространства", когда мы используем пространство и отказываемся от него, и перейти к "экономике кругового пространства" - устойчивому способу использования пространства, в котором особое внимание уделяется повторному использованию, рециркуляции и эффективному управлению космическими ресурсами. (...) это относится к принципам обращения с отходами, предусматривающим, что по истечении срока службы изделие должно быть предназначено для повторного использования или переработки. Первым шагом является проектирование космических аппаратов с использованием материалов, которые сводят к минимуму загрязнение окружающей среды и производят меньше отходов. Второй - ремонт вышедших из строя частей спутников на орбите для продления их жизненного цикла. Третий - переработка материалов с вышедших из строя спутников для использования в новых миссиях без необходимости возвращать спутники на Землю. И, наконец, мы должны собирать и перерабатывать космический мусор, чтобы снизить риск столкновений и вернуть ценные компоненты. (...) Мы должны создать технологию, позволяющую продлить срок службы спутников и сократить потребность в дорогостоящих и ресурсоемких миссиях по замене. Нам нужны космические аппараты, которые могут приближаться к стареющим спутникам и состыковываться с ними, используя роботов для их ремонта, дозаправки и модернизации. (...) Положительным шагом в этом направлении является технология многоразовых ракет, которую разрабатывает SpaceX. Например, ускорители их ракет Falcon 9 могут приземляться вертикально после сброса в космосе после запуска, что позволяет им снова летать. (...) Но пока SpaceX - единственная компания или агентство, запускающее спутники с помощью многоразовых ракет. Нам нужно больше. Также наблюдается движение в сторону обслуживания работающих спутников на орбите. (...) Помимо экономии средств, обслуживание на орбите сокращает частоту запусков новых спутников, что, в свою очередь, сводит к минимуму накопление космического мусора и выбросы парниковых газов, которые возникают при запуске ракет. Удаление мусора с орбиты является еще одной сложной задачей. Различные виды мусора требуют различных методов удаления, и многие идеи исходят от рыбной промышленности: в одних стратегиях используются сети, в других - гарпуны, а в третьих - крючки. (...) Кроме того, сбор любого вида космического мусора обходится очень дорого, потому что все, что не контролируется активно в космосе, падает. (...) Тем не менее, определенный прогресс был достигнут. (...) Наконец, более эффективная двигательная установка позволяет космическим аппаратам расходовать меньше топлива и дольше работать при первоначальной загрузке. Электрические двигательные установки, такие как ионные двигатели и двигатели на эффекте Холла, являются новыми технологиями, которые обеспечивают более высокую эффективность и экономию топлива по сравнению с традиционными химическими двигателями. (...) Одних новых технологий недостаточно, чтобы решить проблему космического мусора - нам также потребуется правовая реформа. (...) Разрозненные нормативные акты в разных странах и регионах также приводят к несогласованности и препятствуют международному сотрудничеству. И многие существующие космические стратегии даже не затрагивают такие устойчивые практики, как обслуживание на орбите, предупреждение образования космического мусора и ответственное использование ресурсов. (...) Правительства могут сыграть решающую роль в стимулировании компаний к проектированию и разработке устойчивых космических систем. Одним из способов добиться этого было бы принятие так называемых законов о расширенной ответственности производителей, которые требуют от компаний помогать в управлении отходами, связанными с технологией, которую они производят. (...) Комитет Организации Объединенных Наций по использованию космического пространства в мирных целях также играет ключевую роль в разработке международного космического права и норм. Его Руководящие принципы по предупреждению образования космического мусора поощряют государства-члены к управлению космическим мусором и содействию устойчивой космической деятельности. Более 100 стран одобрили эти руководящие принципы, включая США, однако сами по себе они не являются действующими законами - это всего лишь рекомендации. (...) Сохранение космической среды для будущих поколений является моральным императивом. В краткосрочной перспективе мы должны принять незамедлительные меры для борьбы с растущей опасностью, связанной с космическим мусором. (...) В долгосрочной перспективе укрепление международного сотрудничества и международных договоров, требующих устойчивой космической практики, имеет решающее значение. (...) Создание замкнутой космической экономики - это не просто вариант, а стратегия, необходимость устойчивого освоения космоса в будущем. Применяя принципы повторного использования, рециркуляции отходов и эффективного управления ресурсами, мы можем снизить риски столкновения с космическим мусором, сохранить ресурсы и обеспечить, чтобы космическое пространство оставалось жизнеспособной областью для научных открытий и коммерческих инноваций".
  2. Клара Московиц. Анатомия сверхновой (Clara Moskowitz, Anatomy of a Supernova) (на англ.) том 332, №2 (февраль), 2025 г., стр. 62-67 в pdf - 3,98 Мб
    "Астрономы недавно получили новые изображения последствий этого насилия [исчезновения звезд], направив космический телескоп Джеймса Уэбба (JWST) на молодой остаток сверхновой под названием Кассиопея А. Свет от ее взрыва достиг Земли около 350 лет назад, примерно во времена Исаака Ньютона. (...) Недавние фотографии помогают ученым ответить на некоторые из наиболее актуальных вопросов о сверхновых, например, о том, какие типы звезд взрываются разными способами и как именно происходят эти вспышки. (...) Астрономы все еще не могут полностью объяснить взрывную силу сверхновой. (...) На данный момент основная причина взрывов сверхновых остается загадкой. Исследователи подозревают, что разгадка кроется в нейтрино, почти безмассовых частицах, которые имеют тенденцию беспрепятственно проходить сквозь материю. Возможно, при высоких температурах и плотностях в ядре звезды часть энергии нейтрино уходит на создание ударной волны. Но для подтверждения этой идеи необходимы дополнительные наблюдения. Среди открытий JWST о Кассиопее А - слой газа, который вырвался из ее звезды во время взрыва. Эти первые снимки показывают газ до того, как он взаимодействовал с веществом за пределами звезды, и до того, как он был нагрет отражением ударной волны, выброшенной звездой во время своего извержения. Этот первозданный выброс сверхновой демонстрирует паутинообразную структуру, которая дает представление о звезде до того, как она взорвалась. (...) Исследование также выявило неожиданную особенность Кассиопеи А, которую ученые назвали "Зеленым монстром". Астрономы считают, что этот слой газа был выброшен звездой до того, как она взорвалась. (...) Ученых интересует, что происходит, когда обломки сверхновой попадают в вещество Зеленого Монстра. (...) Астрономы продолжат изучать Кассиопею А, хотя их успех заставляет их обратить внимание JWST на некоторые из других примерно 400 идентифицированных остатков сверхновых в нашей галактике. Получение более крупной выборки поможет исследователям связать различия в том, как выглядят и эволюционируют остатки, с различиями между звездами, которые их породили". - На прилагаемых фотографиях показаны снимки Кассиопеи А и "Зеленого монстра", сделанные Хабблом и JWST.
  3. Клара Московиц. Клуб астронавтов (Clara Moskowitz, The Astronaut Club) (на англ.) том 332, №2 (февраль), 2025 г., стр. 88-91 в pdf - 2,95 Мб
    Инфографика: "На данный момент более 700 человек преодолели отметку в 50 миль (80 км), которая считалась границей космоса, когда впервые начались космические полеты. В то время Советский Союз и США были единственными командами, а военнослужащие в возрасте около 30 лет были практически единственными игроками. С тех пор астронавты изменились во многих отношениях: мужчины и женщины из 47 стран побывали в космосе, в том числе жители всех континентов, большинство из которых работают в космических агентствах, а некоторые - в частных компаниях. Однако стремление к разнообразию не было простым: в 1963 году в СССР в космос полетела первая женщина, но в последующие годы в общей сложности полетели еще только пять женщин-космонавтов, в то время как десятки мужчин-космонавтов повышались летали каждое десятилетие. Число посетителей космоса достигло своего пика в 1990-х годах, когда НАСА совершало в среднем шесть полетов на шаттлах в год, в каждом из которых обычно находилось от пяти до семи астронавтов". - страницы 88-89, вверху: "Ежегодное распределение астронавтов по возрасту, отправляемых в космос. Здесь указаны возрасты астронавтов за каждый год, когда люди летали в космос, а ширина каждого квадрата соответствует количеству летчиков для каждого возраста. Как средний возраст астронавтов, так и разброс по возрастам постепенно увеличивались с течением времени". - страницы 88-89, середина: "Астронавты, отправляемые в космос с течением времени. В течение многих лет НАСА и Российское космическое агентство "Роскосмос" были единственными космическими агентствами в мире. Национальное космическое управление Китая отправило своего первого астронавта в 2003 году. После того, как в 2011 году космические шаттлы НАСА вышли из эксплуатации, НАСА закупило транспорт для своих астронавтов в России, а затем на частных американских космических кораблях". - полный круг = государственный оператор, пустой круг = частный оператор - страницы 88-89, внизу: "Астронавты по регионам гражданства и полу, по десятилетиям. Черная неровная линия разделяет десятилетия космических путешествий. Внутри каждой зоны указано количество космических путешественников для каждого географического региона в разбивке по полу (мужчины выделены сплошным цветом, женщины - полосатым)". - страницы 90-91: "Данные о полетах отдельных астронавтов. Каждая плитка представляет собой отдельного космонавта. Цветные символы и плитки обозначают регион гражданства каждого человека, его пол, количество миссий, продолжительность пребывания в космосе, тип полета и государственный или частный статус. Вертикальными белыми линиями отмечены астронавты, погибшие во время космических полетов, а белыми кружками - астронавты, находившиеся в космосе на момент публикации (декабрь 2024 года)". - Каждый прямоугольник представляет астронавта. Прямоугольники расположены по дате первого полета в космос: от Юрия Гагарина 12 апреля 1961 года (вверху слева) до экипажа миссии Blue Origin NS-28 22 ноября 2024 года (внизу справа). - К сожалению, имя астронавта не называется.
  4. Фил Плейт. Самый круглый объект во Вселенной (Phil Plait, The Roundest Object in the Universe) (на англ.) том 332, №2 (февраль), 2025 г., стр. 79-81 в pdf - 831 кб
    "Какой самый сферический объект, который мы когда-либо находили - не обязательно самый гладкий, но самый симметричный, когда каждая точка на его поверхности находится на одинаковом расстоянии от центра? (...) Многие крупные объекты круглые, и это не случайно. Во всем виновата гравитация. (...) В какой-то момент гравитация [растущих космических объектов] становится настолько сильной, что все, что торчит слишком высоко, разрушается, и этот процесс в конечном итоге приводит к тому, что объект становится сферическим. (...) Это свойство проявляется у объектов, когда они вырастают примерно до 400 километров в поперечнике, в зависимости от от того, из чего они сделаны. Таким образом, почти любое отдельное тело с таким диаметром или больше будет иметь форму, близкую к сферической: крупные астероиды, спутники, планеты и даже звезды. Итак, какие из них являются наиболее геометрически совершенными сферами? (...) ответ, который я получил, был неожиданным: Солнце - да, наша ближайшая звезда! Звезды, как правило, довольно круглые, но даже самые круглые из них не являются идеальной сферой. Основной причиной этого отклонения является вращение, поскольку оно создает центробежную силу. (...) Величина силы зависит от размера объекта и от того, насколько быстро он вращается - более крупные объекты испытывают большую силу, а более быстрые вращения также увеличивают силу. Солнце, без сомнения, большое: на его диаметре, размером в 1,4 миллиона километров могло бы поместиться более 100 планет земного типа. Но в то же время наше светило вращается медленно, один оборот занимает примерно месяц. Это спокойное вращение может сделать его победителем в конкурсе на округлость. (...) Однако точно определить, насколько круглым является Солнце, оказывается непросто. У него не такая поверхность, как у Земли; оно газообразное, поэтому вещество внутри него становится все менее и менее плотным по мере удаления от центра. Однако вблизи "поверхности" плотность падает так быстро, что с Земли край Солнца кажется резким. Измерить размер солнца с земли сложно, потому что атмосферный воздух на Земле турбулентен, из-за чего этот край не виден. (...) Проведя очень тщательные измерения, они [астрономы] обнаружили, что сплюснутость солнца - насколько оно сплюснуто на полюсе по сравнению с экватором - невероятно мала, при соотношении всего 0,0008 процента. Это означает, что солнце на 99,9992 процента имеет сферическую форму. (...) ученые также обнаружили, что это соотношение, по-видимому, не меняется в зависимости от магнитного цикла Солнца. (...) Я отмечу, что другое тело Солнечной системы имеет почти такую же круглую форму: Венера - и по той же причине. Венера вращается чрезвычайно медленно; один оборот вокруг своей оси занимает около 243 дней. (...) Это свойство делает ее, возможно, более круглой, чем Солнце в принципе, хотя на самом деле перепады высот ее поверхности составляют несколько километров, и, таким образом, в масштабе она не такая круглая, как наша звезда. (...) Другие звезды, однако, могут быть поразительно асферическими. Одна из причин заключается в том, что некоторые из них вращаются так быстро, что центробежная сила на их экваторе огромна (...) Другие объекты могут быть даже круглее нашего Солнца, но они находятся так далеко от наших приборов зондирования, что мы не можем точно их различить. Однако некоторые из них мы можем достаточно надежно изучить, исходя из первых принципов, - например, нейтронные звезды, которые, как класс, являются настоящими тяжеловесными претендентами на звание наиболее сферических объектов. (...) ядро звезды [которая стала сверхновой] сжалось, превратившись, по сути, в шар из нейтронов, всего лишь два десятка километров в поперечнике. (...) Различные силы могут заставлять некоторые нейтронные звезды вращаться чрезвычайно быстро, однако (...) Со временем вращение нейтронной звезды замедляется, и та, которая сформировалась на ранней стадии Вселенной, теперь может быть почти неподвижной. В этом случае интенсивной гравитации (...) было бы достаточно, чтобы превратить нейтронную звезду в почти идеальную сферу, возможно, с разницей в сплющивании между ее экватором и полюсами, измеряемой в атомных долях. Найдут ли астрономы когда-нибудь такую сферическую звезду? Может быть, как только у них дойдут до этого руки."
  5. Фил Плейт. «Самое темное место в Млечном пути» (Phil Plait, The Darkest Place in the Milky Way) (на англ.) том 332, №3 (март), 2025 г., стр. 88-89 в pdf - 908 кб
    "Некоторые из наиболее привлекательных небесных объектов тихие, устойчивые, даже спокойные - и настолько темные, что они не только не излучают видимого света, но фактически поглощают его, создавая такую глубокую черноту, что они кажутся вырезанными в пространстве. (...) Я предпочитаю называть их БОковыми шарами, свое название они получили в честь голландско-американского астронома Барта Бока, который изучал их. Глобула Бок - это небольшой плотный сгусток космической пыли; миллионы таких сгустков разбросаны по всей нашей галактике. Они холодны и непрозрачны для видимого света, настолько, что до недавнего времени единственным способом увидеть их был силуэт на более ярком фоне. (...) Из всех темных шаров, которые мы можем наблюдать в наши телескопы, моей любимой, без сомнения, является Barnard 68, в просторечии называемая B68. Расположенное примерно в 500 световых годах от Земли, это угольно-черное облако в форме запятой имеет ширину всего в полсветового года и простирается примерно на пять триллионов километров. (...) B68 кажется нам отрицательным пространством, без звезд. Почему здесь так темно? Хотя B68 состоит в основном из газообразного водорода (как и почти все остальное в нашей галактике), в нем также много углерода. (...) Одной из отличительных (или гасящих) характеристик пыли является ее способность блокировать видимый свет. И пылевые облака действительно могут быть темными. В случае с B68, свет любой звезды, расположенной по другую сторону от нас, уменьшится в 15 триллионов раз. Чтобы представить это в перспективе, уменьшение яркости солнца на нашем небе на такую величину привело бы к тому, что оно превратилось бы в звезду четвертой величины, которую трудно заметить даже при слабом освещении неба. (...) Невероятная способность B68 поглощать свет обусловлена удивительно небольшим количеством пыли. Даже в центре, где она наиболее плотная, в B68 содержится менее миллиона частиц вещества на кубический сантиметр. Может показаться, что это слишком много, но здесь, на Земле, это можно сравнить с вакуумом лабораторного уровня - на уровне моря атмосфера нашей планеты содержит около 1019 молекул на кубический сантиметр, что делает воздух, которым вы дышите, примерно в 10 триллионов раз плотнее, чем В68 в лучшем виде. (...) с нашей точки зрения, мы можем видеть некоторые звезды на заднем плане сквозь относительно более тонкий материал по краям, но чем ближе мы смотрим к центру, тем больше света поглощается. (...) инфракрасный свет проходит через B68 еще легче, поэтому телескопы, настроенные на эти длины волн, могут видеть еще больше звезд. Астрономы могут использовать это покраснение и затемнение, чтобы определить, сколько пыли находится внутри облака. Используя другие методы, они также могут измерить температуру B68. Глобулы Bok ужасно холодные, и B68 не является исключением: по краям их температура составляет -256 градусов по Цельсию, а в центре - всего -265 градусов по Цельсию. Это едва выше абсолютного нуля! (...) B68 не так уж массивна, ее масса всего в три-четыре раза превышает массу Солнца, но, как правило, этого более чем достаточно, чтобы вызвать гравитационный коллапс. Небольшое количество внутреннего тепла позволяет B68 надуваться подобно воздушному шару, однако (...) Но этот хрупкий тупик не может длиться вечно. (...) B68, возможно, сейчас коллапсирует, что означает, что это темное облако в буквальном смысле может ожидать светлое будущее: оно сформирует звезду. (...) Если это произойдет, почти все вещество, оставшееся в облаке, будет рассеяно светом новорожденной звезды или звезд - всего, что есть, за исключением, возможно, незначительной доли, попавшей в гравитационные тиски звезды, которая, в свою очередь, может конденсироваться и сжиматься, образуя диск из материала, предназначенного для формирования планет. (...) когда-то давным-давно мы начинали почти так же; наше солнце родилось в огромной, затемненной пылью туманности, которая в конце концов засветилась тысячами других звезд, звездных яслей, которые, как и их космические дети, давно рассеялись."
  6. Дакота Тайлер, «Пропавшие планеты» (Dakotah Tyler, The Missing Planets) (на англ.) том 332, №3 (март), 2025 г., стр. 40-47 в pdf - 4,40 Мб
    "мы нашли тысячи из них [экзопланет], разрушив все, что, как мы думали, мы знали о планетах. Оказывается, планетные системы в нашей галактике отличаются удивительным разнообразием - в некоторых из них есть плотно расположенные планеты экзотических конфигураций; в других преобладают газовые гиганты, скользящие по своим звездам. Сейчас наступила новая эра в планетологии - демография экзопланет. Анализируя закономерности в размерах, орбитах и составе обнаруженных планет, ученые раскрывают реальные процессы, которые формируют планетные системы. (...) Первые подтвержденные экзопланеты были обнаружены в 1992 году на орбите пульсара (...) Настоящий прорыв произошел в 1995 году, когда была обнаружена 51 Пегаса b, первая экзопланета, обращающаяся вокруг звезды, подобной солнцу. Этот мир превзошел все ожидания. В отличие от далекого газового гиганта, подобного Юпитеру, 51 Пегаса b была гигантской массой в половину массы Юпитера, но вращалась на удивление близко к своей звезде, совершая оборот вокруг нее каждые 4,2 дня. При такой близости планета нагревалась бы примерно до 1800 градусов по Фаренгейту [980 градусов по Цельсию], что было бы достаточно горячо, чтобы испарить некоторые металлы. (...) Астрономы назвали этот странный новый класс планет "горячими Юпитерами". Существование горячих Юпитеров поставило под сомнение ведущие модели формирования планет. (...) По мере того, как с помощью метода определения лучевой скорости обнаруживалось все больше планет, начали проявляться закономерности. К 2008 году, после обследования сотен звезд, исследователи обнаружили, что около 10 процентов солнцеподобных звезд содержат планеты-гиганты, расстояние между которыми в несколько раз превышает расстояние от Земли до Солнца. Однако эти ранние демографические данные были искажены из-за предвзятости наших наблюдений. Важным шагом вперед в изучении планетарной демографии стал запуск НАСА космического телескопа "Кеплер". (...) "Кеплер" обнаружил тысячи планет, используя так называемый транзитный метод. (...) примерно у половины всех солнцеподобных звезд есть по крайней мере одна планета размером между Землей и Нептуном. Эти планеты, которых вообще нет в нашей Солнечной системе, похоже, совершают полный оборот вокруг своих звезд за недели или месяцы, а не за годы. (...) По мере роста выборки "Кеплера" загадка становилась все более очевидной. Астрономы заметили поразительную нехватку планет с размерами от 1,6 до 1,9 радиуса Земли, которую они назвали радиальным разрывом. (...) Что-то в формировании или эволюции планет должно активно препятствовать сохранению планетами этого среднего размера (...) Дополнительную интригу этой загадке добавляет явление, известное как "горячая пустыня Нептуна"."Планеты размером с Нептун явно отсутствуют на орбитах короче примерно трех дней. (...) Измерив массы известных экзопланет, астрономы обнаружили, что разница в радиусе соответствует изменению состава. Планеты с массой ниже этой границы плотны и скалисты, как Земля, в то время как те, что расположены выше, имеют меньшую плотность, что указывает на наличие существенной атмосферы. Планеты меньшего размера, по-видимому, являются суперземлями. Самые крупные из них - это "мини-Нептуны" со скалистыми ядрами, покрытыми толстыми слоями водорода и гелия. (...) Астрономы считают, что существует несколько процессов, которые могут лишить планеты атмосферы или, в первую очередь, ограничить их образование. (...) Фотоиспаривание - одно из лучших объяснений разницы в радиусе. Когда молодые звезды зажигаются, они испускают экстремальное ультрафиолетовое и рентгеновское излучение, а также мощные потоки заряженных частиц. Планеты, находящиеся на орбите слишком близко к своим звездам-хозяевам, оказываются окутанными этим излучением, которое нагревает их атмосферы до такой степени, что частицы могут улетучиваться в космос. (...) Теория фотоиспарения дает несколько предсказаний, которые совпадают с наблюдаемыми закономерностями. (...) Второй механизм исчезновения атмосфер планет основан на энергии ядра потеря массы, которая вызвана выделением тепла внутри планеты. (...) Потеря массы за счет энергии ядра предполагает, что меньшие и менее массивные планеты, с более слабой гравитацией и меньшим количеством изолирующего газа, теряют свою атмосферу снизу по мере остывания в течение сотен миллионов лет. Более крупные планеты, напротив, обладают достаточной гравитационной силой, чтобы сохранять свою оболочку, несмотря на внутреннее нагревание. (...) Этому могут способствовать и другие процессы. (...) Недавние наблюдения позволили выявить некоторые из этих ситуаций в действии, что является прямым свидетельством выхода атмосферы. (...) Убедительным примером является планета WASP-69b (...) WASP-69b - газовый гигант размером с Юпитер и массой с Сатурн, вращающийся так близко к своей звезде, что полный оборот вокруг нее занимает у планеты всего 3,8 дня. (...) мы сообщали о выбросах вещества вокруг планеты, которые это указывает на то, что он активно теряет гелий. В этом случае механизмом потери массы должно быть фотоиспарение. (...) Наши и другие результаты показывают, как фотоиспарение может помочь объяснить как разрыв в радиусе, так и горячую пустыню Нептуна, демонстрируя этот процесс потери массы в реальном времени. (...) При достаточной близости к звезде только горячие Юпитеры обладают массой, необходимой для сохранения атмосферы - у всех остальных планет остается голое каменистое ядро. (...) Хотя большинство астрономов сходятся во мнении, что потеря массы в атмосфере является основной причиной того, что мы не видим Земли чуть большего размера или горячих Нептунов на близких орбитах, более мелкие детали остаются неразрешенными. (...) Изучая, как планеты теряют или сохраняют свою атмосферу, мы раскрываем секреты обитаемости, разнообразия и сил, действующих на них. которые создают миры по всей галактике. Наша солнечная система, которая когда-то считалась основой для всех планетных систем, теперь является лишь одной из бесчисленных возможностей - уникальной конфигурацией в космосе, изобилующем разнообразием".
  7. Крис Симмс. Заметка о вспышке (Chris Simms, Flare Notice) (на англ.) том 332, №4 (апрель), 2025 г., стр. 10-11 в pdf - 1,00 Мб
    "Солнечные вспышки - это всплески излучения с поверхности Солнца, за которыми иногда следует пузырь из намагниченных частиц плазмы, называемый выбросом корональной массы (CME). Если они случайно разлетятся в направлении Земли, то могут вызвать геомагнитные бури, которые повредят энергосистемы на земле или космические аппараты на орбите. А само излучение от солнечных вспышек может нарушить работу сетей связи и спутников. К сожалению, ученые, изучающие солнечную энергию, не могут с уверенностью предсказать, когда на солнце произойдет вспышка. (...) Теперь исследователи использовали данные обсерватории солнечной динамики НАСА, чтобы показать, что характерное мерцание в огромных петлях бурлящей плазмы, которые поднимаются дугой из атмосферы Солнца, называемой короной, по-видимому, сигнализирует о том, что вскоре может произойти крупная вспышка. Эта связь может помочь исследователям подготовиться к вспышке и найти признаки того, что приближающийся CME может обрушиться на Землю в течение пары дней. Эмили Мейсон, гелиофизик из исследовательской фирмы Predictive Science, базирующейся в Сан-Диего, и ее коллеги наблюдали корональные петли в магнитно-активных областях, где произошло 50 сильных солнечных вспышек. Они обнаружили, что излучение ультрафиолетового излучения петель хаотично менялось за несколько часов до вспышки (...) Мэйсон и ее команда наблюдали вспышки на внешних краях Солнца с нашей точки зрения, потому что именно там их свет лучше всего виден с Земли. Вспышки на восточном оконечности Солнца будут удаляться от Земли по мере вращения Солнца, но вспышки на западном оконечности могут попасть в атмосферу планеты, говорит Мейсон. На данный момент наша точка обзора означает, что мы не можем легко увидеть петли, исходящие откуда-либо еще на Солнце. Но Европейское космическое агентство планирует запустить космический аппарат под названием Vigil в 2031 году, что должно дать нам дополнительную перспективу".
  8. Фил Плейт. Что в имени (звезды)? (Phil Plait, What's in a (Star's) Name?) (на англ.) том 332, №4 (апрель), 2025 г., стр. 84-85 в pdf - 753 кб
    "Многие названия звезд, которые мы используем сегодня, на самом деле имеют арабское происхождение. Александрийский астроном Клавдий Птолемей создал карту звездного неба для своей чрезвычайно популярной книги "Математический трактат", написанной на греческом языке около 150 года н.э. Она была переведена на арабский язык более 1000 лет назад и получила название "Альмагест", что само по себе является искаженной арабизированной версией греческого слова, означающего "величайший", и многие из этих арабских вариантов названий звезд были сохранены, даже когда карта была переведена на другие языки. Ригель, Денеб, Альдебаран и многие другие ярчайшие звезды на небе получили свои названия благодаря таким причудам древнего книгоиздания. Другие появились скорее как прозвища, например, Полярная звезда, названная так из-за своего положения на небе вблизи северного небесного полюса, и красный Антарес, что буквально означает "соперник Марса". Третьи названы в честь астрономов, которые их изучали, таких как звезда Барнарда и звезда Ван Маанена. Очевидно, что такая методология присвоения имен далека от идеала, и иногда это приводит к путанице в том, как на самом деле следует называть звезду. (...) Менее 1000 звезд имеют собственные названия (...) и это хорошо, потому что в Млечном Пути сотни миллиардов звезд! Проблема не столько в том, чтобы дать им названия, сколько в том, чтобы называть их последовательно. (...) астрономы испробовали множество систем для стандартизации названий с разной степенью успеха. (...) По мере совершенствования телескопов и фотографического оборудования можно было видеть более тусклые звезды, что означало, что каталоги получили более широкий спектр возможностей. Было также отмечено больше свойств звезд, включая их физическое движение на небе относительно друг друга, которые обычно становятся очевидными только после многих лет тщательного наблюдения. С появлением более крупных телескопов в Южном полушарии также стали возможны обзоры всего неба, что привело к необходимости создания еще более объемных и качественных каталогов. К 1990-м годам цифры стали, скажем так, астрономическими. (...) Когда строился космический телескоп "Хаббл", астрономы поняли, что для его правильного наведения им нужен очень точный список положений и яркости звезд. Итак, команда Научного института космического телескопа создала каталог Guide Star, который в настоящее время включает почти миллиард звезд. (...) Существует еще больше каталогов, но самый новый и полный из них подготовлен Gaia, миссией Европейского космического агентства, целью которой было измерение яркости, положения, движения и цвета звезд и других космических объектов с феноменальной точностью. (...) В последнем выпуске содержится новая информация о почти двух миллиардах звезд Млечного Пути. Эти более современные наборы данных (а их слишком много, чтобы упоминать их здесь по отдельности) включают в себя так много звезд, что любые названия безнадежны. Вместо этого они обычно идентифицируют объект с помощью буквенно-цифрового обозначения, сочетающего название по каталогу с положением звезды на небе; например, вы можете увидеть звезду, обозначенную как 2MASS J05551028+0724255, в двухмикронном обзоре всего неба, представляющем координаты 05 часов, 55 минут и 10,28 секунды по местному времени прямое восхождение и склонение на 07 градусов, 24 минуты и 25,5 секунды. Другое название этой звезды - Бетельгейзе. (...) В любом случае, неизбежная проблема здесь заключается в том, что у любой звезды может быть много названий, даже если мы будем придерживаться самых законных. Очень много. Например, наш старый друг Бетельгейзе имеет не менее 46 обозначений, перечисленных в SIMBAD, базе данных астрономических объектов за пределами Солнечной системы. (...) используемое название может зависеть от того, какой астроном наблюдает за ним и как оно наблюдается. (...) Но я согласен с этим вариантом; это дает нам определенную гибкость в выборе названий, и нетрудно найти, какие имена подходят к какой звезде".
  9. Меган Бартелс. «За пределами Солнечной системы» (Meghan Bartels, Beyond the Solar System) (на англ.) том 332, №4 (апрель), 2025 г., стр. 62-69 в pdf - 5,28 Мб
    "только двум космическим аппаратам с работающими приборами когда-либо удавалось покинуть космический пузырь, управляемый нашим Солнцем. Два космических аппарата "Вояджер-2" были запущены в 1977 году в грандиозное путешествие к внешним планетам; оба пролетели мимо Юпитера и Сатурна, а позже в маршрут "Вояджера-2" вошли Уран и Нептун. С тех пор оба зонда усиремились в открытый космос, и некоторые из их приборов продолжали наблюдения, несмотря на проблемы, связанные со старением технологий и уменьшением мощности источников питания. В 2004 году "Вояджер-1" пережил "шоковое завершение" - начало своего многолетнего перехода в межзвездное пространство. "Вояджер-2" преодолел тот же порог в 2007 году. (...) Находки "Вояджеров" открыли бесчисленное множество новых загадок о внешней гелиосфере и межзвездном пространстве. Этим культовым космическим аппаратам сейчас не хватает времени, но ученые заняты поиском новых способов изучения загадок земли. (...) Солнце - это бурлящая масса плазмы и магнетизма, которая излучает частицы на миллиарды миль в космос в форме солнечного ветра. Магнитное поле Солнца, которое перемещается вместе с солнечным ветром, также влияет на пространство между планетами. Гелиосфера растет и сжимается в ответ на изменения уровня солнечной активности в течение 11-летнего цикла. (...) За пределами гелиопаузы находится межзвездное пространство, в которое "Вояджер-1" вошел в 2012 году, а "Вояджер-2" достиг в 2018 году. Это среда, сильно отличающаяся от той, что находится внутри нашей гелиосферы, - более тихая, но вряд ли спокойная. (...) Однако, какова эта форма [гелиосферы], ученые пока не знают. (...) определенность в этом затруднена из-за нашего ограниченного обзора Земли. (...) В 2008 году НАСА запустило аппарат Interstellar Boundary Explorer (IBEX), который вращается вокруг Земли и собирает образцы частиц, называемых энергетически нейтральными атомами, которые проникают с края гелиосферы. Ученые могут использовать измерения характеристик этих частиц с помощью IBEX, чтобы реконструировать часть того, что происходит далеко отсюда, за миллиарды миль. Среди ключевых достижений IBEX - открытие ленты из энергетически нейтральных атомов, протянувшейся через гелиослой (область, где движение солнечного вещества продолжает замедляться и даже меняет направление). Ученые полагают, что лента может быть вызвана частицами, которые попадают в гелиосферу и выходят из нее. (...) Наблюдения IBEX продолжаются гораздо дольше, чем первоначально планировалось, и космическому аппарату удалось собрать данные за полный 11-летний солнечный цикл, чтобы наблюдать реакцию гелиосферы на активность излучения Солнца. (...) IMAP [Межзвездный картографический и ускорительный зонд, запуск которого запланирован на осень 2025 года] отправится к точке, которую ученые назвали точкой Лагранжа 1, - стабильной орбите, удаленной от Земли примерно на миллион миль к Солнцу. С этой точки обзора космический аппарат уловит множество частиц: те же энергетически нейтральные атомы, которые показали ленту КОЗЕРОГА; так называемые поглощающие ионы, которые зарождаются как атомы в межзвездной среде, заряжаются вблизи Солнца и меняют курс, направляясь обратно к гелиопаузе; и частицы межзвездной пыли - обломки мертвых звезд, - которые проникают в Солнечную систему. Тем временем зонд также будет наблюдать за магнитным полем Солнца и структурой солнечного ветра, чтобы выяснить, почему частицы движутся именно таким образом. (...) Еще один космический аппарат уже находится в пути, чтобы последовать за "Вояджерами" за пределы гелиосферы: миссия НАСА "Новые горизонты", которая пролетела мимо Плутона в 2015 году. (...) Отдаленные наблюдения "Вояджеров" остаются всего лишь "хлебными крошками", дразнящими проблесками области, которая находится почти за пределами Солнечной системы. Доступные нам данные - именно тот тип данных, который вызывает больше вопросов, чем ответов. Например, ученые ожидали, что магнитные поля гелиосферы и межзвездного пространства будут кардинально отличаться, но зонды обнаружили обратное. В 2020 году "Вояджер-1" попал во странный "фронт давления" - внезапное усиление магнитного поля, которое ученые не могут объяснить. И хотя оба космических аппарата уже много лет находятся за пределами гелиопаузы, они продолжают наблюдать небольшие следы солнечной активности в материале, через который они пролетают, расширяя понимание учеными того, как далеко простирается влияние нашей звезды. (...) Одно можно сказать наверняка: независимо от того, когда завершится их миссия, космический аппарат "Вояджер" продолжит свою работу. это заставит ученых желать больше данных из межзвездного пространства".
  10. Робин Джордж Эндрюс. «Темные кометы» (Robin George Andrews, Dark Comets) (на англ.) том 332, №5 (май), 2025 г., стр. 58-65 в pdf - 558 кб
    "В 2016 году [Давид] Фарноккья [из Центра изучения околоземных объектов НАСА в Калифорнии] увидел нечто действительно необычное: астероид, известный как 2003 RM, который, казалось, блуждал, обладая собственным разумом. Его орбита вокруг Солнца сместилась таким образом, что гравитационные эффекты невозможно было объяснить. Давид даже учел небольшую силу, который солнечный свет оказывает на космические камни, и орбита астероида все равно не соответствовала ожиданиям. (...) "На снимках эти объекты действительно выглядят как астероиды", - говорит Фарноккья. - Но их движение больше похоже на движение комет. - Они действуют так, как будто их толкают струи, образованные льдом, превращающимся в пар. Но на сегодняшний день не обнаружено никаких свидетельств существования таких струй. (...) Поскольку источник их движения не виден, [Дэррил] Селигман [планетолог из Мичиганского государственного университета] дал этим 14 странностям Солнечной системы довольно броское название: темные кометы. (...) Когда частицы солнечного света, фотоны, попадают на космический камень, они со временем оказывают на него небольшое воздействие. Это заметный, но незначительный эффект. (...) некоторые из этих астероидов, по-видимому, обладали негравитационными ускорениями, которые невозможно было объяснить, даже когда ученые ссылались на влияние солнечного света. (...) Неустойчивые движения комет, как правило, легко объяснить. "На поверхности кометы есть лед, и когда комета подлетает достаточно близко к Солнцу, этот лед начинает сублимироваться, и это дает кометам небольшой толчок", - говорит Фарноккья. Газовыделение кометы, как правило, незаметно; его можно увидеть только с помощью специальных телескопических фильтров. Но пыль, выброшенная кометой, когда она разбрызгивается, хорошо видна. (...) Но 2003 RM выглядел как светящаяся точка. Вокруг него не было ни газопылевого кома, ни хвоста. Издалека он просто выглядел как астероид. (...) В 2023 году Селигман, Фарноккья, Эно и другие объявили о новом открытии - точнее, о шести. В 2003 году они обнаружили еще полдюжины объектов, подобных RM, каждый из которых обладал необъяснимым негравитационным ускорением, и у каждого отсутствовали какие-либо признаки кометной активности, даже когда на них были направлены самые зоркие телескопы в мире. (...) к 2024 году команда обнаружила еще семь, доведя общее количество до 14. (...) эти темные кометы (...) можно разделить на два различных семейства. Одно семейство, внешние темные кометы - давайте назовем их внешними - казались более отражающими и крупными, порядка сотен метров в длину или больше. (...) Затем у нас есть внутренние темные кометы, или innies. Они меньше - всего 50 метров или меньше в диаметре - и имеют круговые орбиты, которые находятся внутри Солнечной системы. (...) Внешние объекты легче объяснить. Эти блестящие объекты с кометоподобными орбитами, вероятно, являются ледяными кометами с ограниченным - и, следовательно, очень трудным для обнаружения - выделением газов и пыли. (...) кажущаяся минимальной кометная активность внешних объектов подтверждает другой механизм: удушение. Если по мере приближения внешних объектов к Солнцу испаряющийся водяной лед выбросит в космос достаточное количество пыли, большая ее часть может упасть обратно на ледяное ядро кометы. Если лед будет постоянно покрываться пылью, то он будет все больше защищаться от солнечного света. (...) "Они покрывают себя слоем пыли и говорят: "Все, я перестал быть кометой. Теперь я хочу стать астероидом', - говорит Фитсиммонс. Внутренние ядра сложнее объяснить, что делает их более привлекательными. (...) "Мы никогда не видели активного ядра кометы диаметром менее нескольких сотен метров". Крошечное ядро чрезвычайно уязвимо для аннигиляции, либо в результате нагревания, либо в результате саморазрушительного пируэта. И все же там есть свои внутренности. (...) Разделение темных комет на два семейства в 2024 году стало заметным шагом вперед (...) Что, однако, особенно воодушевило охотников за темными кометами, так это то, что японский космический аппарат [Hayabusa2] уже находится на пути к темной комете (...), которая была обнаружена [после ее первичного обнаружения миссия] получила название Hayabusa2# (буква # означает "острый", как в нотной записи; здесь она расшифровывается как небольшой зонд для разведки опасных астероидов). Сейчас он летит к двум близлежащим астероидам (...) В июле 2026 года он пролетит мимо первого астероида, названного Торифуне, а в 2031 году встретится с гораздо меньшим объектом - 1998 KY26. Все верно: это одна из внутренних темных комет. (...) Когда несколько лет назад она была выбрана в качестве цели, его команда не сталкивалась ни с какими исследованиями темных комет. (...) [Юичи] Цуда [руководитель проекта японской миссии "Хаябуса-2"] и его команда все еще решают, что делать, когда космический аппарат достигнет 1998 KY26. Они могли бы попытаться выйти на орбиту вокруг темной кометы и просканировать ее поверхность в поисках любых кометоподобных льдов и минералов. Они могли бы использовать оставшуюся пулю, чтобы взорвать кратер на ее боку, раскрывая его внутренний состав. Hayabusa2# может даже завершить свою длительную миссию, предприняв рискованную посадку на бешено вращающуюся скалу. (...) На данный момент темные кометы останутся загадкой."
  11. Фил Плейт. Столкнется ли астероид с Землей? (Phil Plait, Will an Asteroid Hit Earth?) (на англ.) том 332, №5 (май), 2025 г., стр. 92-93 в pdf - 270 кб
    "последнее сообщение [предупреждение о столкновении с астероидом] касается астероида 2024 YR44, ширина которого, по оценкам, превышает 50 метров. Некоторое время существовала вероятность в несколько процентов, что он столкнется с Землей, но после дополнительных наблюдений к концу февраля 2025 года вероятность столкновения была практически исключена. Но как кто-то может знать такие вещи? Как астрономам найти эти астероиды, а затем определить, где они будут находиться через много лет? (...) В настоящее время существует около дюжины телескопических обсерваторий обзорного типа, которые каждую ночь делают широкоугольные снимки неба и ищут неоткрытые объекты, проносящиеся по нашей Солнечной системе. При наблюдении с Земли кажется, что такие объекты движутся относительно гораздо более удаленных "неподвижных" звезд. (...) Как только обнаружен новый движущийся объект, необходимо определить его орбиту. (...) Вот тут-то и пригодятся Кеплер и его законы. Он выяснил, что все орбиты имеют одну из трех форм: эллиптическую, параболическую или гиперболическую. (...) Большинство комет, которые приближаются к Солнцу из-за Нептуна, движутся по орбитам, близким к параболическим. Только два объекта были обнаружены на чрезвычайно гиперболических орбитах: Оумуамуа и комета 2I/Борисова. Но объект, находящийся на эллиптической орбите, привязан к Солнцу и должен вращаться вокруг него бесконечно. (...) Как только мы узнаем все эти параметры (называемые элементами орбиты), мы можем математически определить соответствующий эллипс. Если мы также знаем положение астероида вдоль его эллипса, скажем, на дату его открытия или в определенное время во время последующих наблюдений, уравнения Кеплера говорят нам, где на своей орбите астероид должен находиться в любой данный день - ну, теоретически. На практике это не так просто. Обычно прогнозистам требуется как минимум три наблюдения астероида с четким разделением, чтобы начать фиксировать все переменные, определяющие форму эллипса. И эти наблюдения не являются точными: (...) Таким образом, результат обычно не является идеальным эллипсом, а расчетная траектория астероида нечеткая; на самом деле, его местоположение может немного отличаться от прогнозируемого. Чем дальше в будущее (или прошлое, если на то пошло) вы пытаетесь рассчитать местоположение, тем хуже становится прогноз. (...) Единственный способ сузить этот путь - провести больше наблюдений (...) Кроме того, чем дольше ведется наблюдение за объектом, тем более точными становятся измерения его орбитальных элементов. (...) Таким образом, мы стремимся наблюдать астероиды как можно дольше, чтобы увеличить временную базу наблюдений. Однако есть и препятствия: некоторые астероиды невелики и быстро теряют яркость по мере увеличения расстояния между ними и Землей. Это относится к 2024 YR4, который сейчас удаляется от Земли и, по прогнозам, исчезнет из поля зрения в конце апреля [2025]. (...) Предполагая, однако, что орбита астероида хорошо ограничена и предсказуема, как мы узнаем, какова вероятность столкновения с Землей? Существует множество методов расчета этой вероятности; один из способов - смоделировать орбиту и отметить даты, когда объект находится вблизи орбиты Земли, а затем определить, будет ли наша планета находиться на его пути в то же время. Если это так, то это плохо. Но не обязательно катастрофично. Земля - небольшая цель, и статистический объем пространства, в котором астероид может находиться в этот момент, обычно велик. (...) В большинстве случаев более точные наблюдения позволяют точно определить траекторию и показывают, что он проходит на значительном удалении от Земли, и шансы практически сводятся к нулю. (...) Но не хочу сказать, что в нас никогда не попадают! Примеров предостаточно, например, Челябинский астероид, который взорвался над Россией в 2013 году, Тунгусское событие в Сибири в 1908 году и столкновение, в результате которого 50 000 лет назад в Аризоне образовался метеоритный кратер. (...) Хорошая новость заключается в том, что подключается еще больше телескопов (...), если какой-нибудь астероид достаточно велик, чтобы нанести ущерб он держит нас под прицелом, и мы надеемся, что узнаем об этом как можно скорее, что, возможно, даст нам достаточно времени, чтобы что-то предпринять".
  12. Фил Плейт. «Что бы увидели инопланетяне?» (Phil Plait, What Would Aliens See?) (на англ.) том 332, №6 (июнь), 2025 г., стр. 88-89 в pdf - 834 кб
    "На данный момент открыто около 6000 экзопланет - миров, которые вращаются вокруг звезд, отличных от нашего Солнца. Если это число уже кажется смехотворно большим, вам лучше приготовиться: экстраполяция этого общего числа предполагает, что только в нашей галактике могут быть сотни миллиардов планет. Какая-то часть из них будет похожа на Землю, хотя на данный момент мы не знаем, что это за часть. Тем не менее, при таком огромном количестве даже небольшой процент планет, похожих на Землю, может означать множество пригодных для жизни планет. Вот почему большинство ученых серьезно относятся к идее существования жизни в других мирах. Жизнь возникла здесь довольно быстро - практически сразу после того, как Земля остыла настолько, что на ней появились океаны, - а это означает, что при благоприятных условиях ее легко создать. (...) однако особенности более высокого порядка, такие как интеллект и технологии, - это другой вопрос, которым мы в основном ограничиваемся предположением (...) Но давайте предположим, что прямо сейчас где-то в Млечном Пути существуют разумные инопланетяне и технологические цивилизации. Могут ли они нас обнаружить? Если вопрос сформулирован таким образом, то в самом общем смысле ответ - да. (...) Инженерная задача может быть сложной, но технически она не является невыполнимой. Тогда, например, достаточно увидеть огни ночного города, чтобы подтвердить, что инопланетяне - то есть люди, потому что мы были бы для них чужими - существуют. (...) Мы не можем знать их уровень [технологии] заранее, но мы знаем свой собственный - поэтому имеет смысл предположить, что их технологии эквивалентны нашим, а затем спросить, с какого расстояния они могли бы нас обнаружить. (...) Команда астрономов во главе с Софией Шейх из Института SETI [поиск внеземного разума] проанализировала данные по этому вопросу и опубликовала свои результаты в Astronomical Journal [2025]. (...) Исследователи рассмотрели различные методы обнаружения наших различных объектов, так называемые техносигналы, и обнаружили, что ответ, что неудивительно, зависит от того, какой именно из них будут искать инопланетяне. (...) Одним из примеров техносигналов является радио. (...) Астрономы разделили радиосигналы на четыре категории: во-первых, целенаправленные, но прерывистые передачи в космос, по сути, сообщения "мы здесь"; во-вторых, намеренные и постоянные целенаправленные сигналы, посылаемые нашим планетарным зондом в глубоком космосе, которые продолжают поступать в галактику; в-третьих, постоянные всенаправленные сигналы, такие как 'утечки излучения от вышек сотовой связи, а также радио- и телевизионных станций; и, в-четвертых, сигналы от артефактов, таких как маломощные нисходящие линии связи от наших межпланетных зондов. Сигналы первой категории могут быть обнаружены с самого дальнего расстояния, потому что при их передаче задействована самая высокая мощность. (...) эти волны можно обнаружить на ошеломляющем расстоянии в 12 000 световых лет от Земли! (...) в пределах этого диапазона находится несколько миллиардов звезд. (...) Для второй категории максимальное расстояние составляет около 65 световых лет, что по-прежнему включает тысячи звезд. Третья категория находится всего в четырех световых годах, что даже меньше, чем расстояние до ближайшей к солнцу звезды. (...) Четвертый сигнал, который будет включать сигналы от наших космических аппаратов, таких как зонд "Вояджер-1", может быть обнаружен на расстоянии чуть менее одного светового года. (...) есть и другие признаки. Одним из результатов нашей современной цивилизации является отпечаток на нашей атмосфере. Помимо углекислого газа, промышленность и другие антропогенные источники выбрасывают в атмосферу немало других химических веществ. (...) это позволяет обнаружить характерные признаки из космоса. (...) В своем исследовании астрономы Института SETI сосредоточились на дистанционном обнаружении диоксида азота, или NO2, - заметного побочного продукта сжигания ископаемого топлива. Учитывая нынешний уровень загрязнения нашего воздуха, они считают, что мы могли бы обнаружить такую сигнатуру с расстояния в 5,7 световых лет. Только система Альфа Центавра находится в пределах этого диапазона (...) Большинство других типов технических обозначений не столь полезны. (...) Лазеры легче обнаруживать, и они уже тестируются НАСА и Европейским космическим агентством для спутниковой связи в космосе. Тем не менее, при разумных предположениях, сфокусированный лазерный луч был бы слишком тусклым, чтобы его можно было обнаружить с расстояния чуть менее шести световых лет (...) В худшем случае речь идет о поиске наших внеземных технологических артефактов. Например, множество искусственных спутников Земли слегка изменяют количество солнечного света, которое блокирует наша планета во время прохождения, но этого недостаточно, чтобы их можно было обнаружить даже с Марса. (...) Все эти цифры сопровождаются довольно серьезной оговоркой, что инопланетяне технологически не более продвинуты, чем мы. (...) Пока никто не может сказать, кто еще делится этим с нами или что они [инопланетяне] используют для исследования [галактики]".
  13. Гаюнг Ли. «Космический торнадо» (Gayoung Lee, Cosmic Tornado) (на англ.) том 333, №2 (сентябрь), 2025 г., стр. 18-19 в pdf - 777 кб
    "при благоприятных условиях мощные плазменные струи, вырывающиеся из молодой звезды, превращают часть обломков в гигантскую спиральную башню из дымящейся космической пыли, одну из которых мы теперь можем видеть лучше, чем когда-либо прежде, благодаря космическому телескопу Джеймса Уэбба (JWST). Астрономы давно знали об этих так называемых объектах Хербига-Аро - ярких вспышках ионизированного газа, часто возникающих вблизи новорожденных звезд, длина которых может достигать световых лет, включая объект под названием HH 49/50, чья характерная форма дала ему прозвище "космический торнадо". Этот объект сияет в системе Хамелеон I. Облачный комплекс находится на расстоянии 625 световых лет от Земли. (...) телескоп [JWST] запечатлел это поле пыли и обломков как раз в тот момент, когда молодая протозвезда (вероятно, расположенная где-то в правом нижнем углу, за пределами показанного здесь изображения) придавала ему эту особую форму. Размытое пятно вверху превращается в далекую спиральную галактику, не имеющую отношения к самому объекту. Его видимое положение на вершине этого продолжающегося события - всего лишь особенность нашей перспективы. (...) маленькие точки, которые, как кажется, плавают перед космическим торнадо, - это не пыль; на самом деле это целые галактики, просвечивающие сквозь него. Заостренные точки - это одинокие звезды."
  14. Робин Джордж Эндрюс. «Открытая планета» (Robin George Andrews, A Planet Revealed) (на англ.) том 333, №2 (сентябрь), 2025 г., стр. 54-63 в pdf - 3,58 Мб
    "Сентябрь 2025 года ознаменует окончание продолжительной миссии "Юноны". Хотя космический аппарат может получить еще одну отсрочку - еще более продолжительную миссию, - он не может продолжать работать вечно. В конечном итоге зонду суждено погрузиться в грозовое небо Юпитера, что приведет к летальному исходу. Независимо от того, когда это произойдет, наследие космического аппарата останется неизгладимым. (...) На заре нового тысячелетия был создан космический аппарат стоимостью 1,1 миллиарда долларов. Триумвират солнечных панелей приводил в действие набор приборов для исследования облаков, некоторые из которых были способны улавливать различные типы излучения, исходящего из глубин планеты. С помощью одной технологии можно измерить, как на космический аппарат влияют небольшие изменения в гравитационном поле планеты, что позволяет ученым определить внутреннюю структуру Юпитера. (...) Самой большой проблемой, с которой столкнулись разработчики миссии, было выяснить, как защитить зонд. (...) По экватору планеты проносится тор радиации, не только смертельный для людей, но и разрушающий любую электронику. (...) Чтобы отсрочить неизбежное, Юнона использует два способа уклонения от радиации. Первый - выйти на орбиту таким образом, чтобы она постоянно проходила над полюсами Юпитера, где радиация минимальна. Во время каждого кругосветного путешествия "Юнона" приближается на расстояние до 3100 миль [5000 км] к верхушкам облаков планеты, что позволяет ей проводить детальные научные наблюдения, проводя ограниченное время в условиях агрессивного излучения. Во-вторых, его самая важная электроника заключена в титановый корпус. (...) Через несколько мгновений после выхода на орбиту "Юнона" продемонстрировала чудеса - начиная с причудливой атмосферы планеты и ее гигантских штормов. (...) Камера JunoCam и инфракрасный картографический прибор Juno, JIRAM, обнаружили восьмиугольную коллекцию из восьми штормы, окружающие центральный циклон на северном полюсе. На южном полюсе, тем временем, наблюдалась пятиугольная группа из пяти штормов, окружавших еще один в центре. (...) Расположение на каждом полюсе казалось странно стабильным: штормы перемещались и сталкивались друг с другом, но ни один из них не исчез. И на сегодняшний день ни у кого нет однозначного объяснения, почему количество штормов на каждом полюсе разное, а также почему их ритм, похоже, никогда не меняется. (...) Самый известный шторм на Юпитере - это Большое красное пятно (...) Но до появления Юноны знания астрономов о нем были поверхностными. Исследовав излучение, испускаемое клубящимися газами пятна, и измерив его гравитационное притяжение, команда Juno поняла, что оно находится на глубине около 300 миль [500 км] под верхушками облаков (...) Когда Juno посмотрела на темную сторону Юпитера, она заметила крошечные вспышки, вызванные очень высотными разрядами молний. Это не имело никакого смысла. (...) После некоторого изучения гигантских облаков Юпитера команда Juno выяснила, что происходит. В верхних слоях планеты содержится много аммиака, и штормы могут выбрасывать в небо лед, который затем связывается с этим аммиаком. Это химическое вещество действует на водяной лед подобно антифризу, превращая его в капли жидкости. И когда эти капли разбиваются о движущиеся вверх кристаллы льда, вы получаете электрический разряд - и головокружительную молнию. (...) "Юнона" обнаружила, что магнитное поле Юпитера неровное и асимметричное - в северном полушарии оно более беспорядочное, чем в южном. Вблизи экватора также наблюдается интенсивная концентрация магнетизма, которая называется Большим голубым пятном. (...) Юпитер содержит океан водорода, находящийся под таким высоким давлением, что электроны отрываются от отдельных атомов водорода, превращая его в экзотическую электрическую жидкость, похожую на металл, которая генерирует мощное магнитное поле. Под водородным морем скрывается еще большая загадка - вопрос о том, что находится внутри самого внутреннего ядра планеты. (...) До прибытия космического аппарата существовало два преобладающих представления о внутренней части Юпитера. Первая заключалась в том, что планета может иметь компактное ядро из каменистого и металлического вещества, не отличающееся от ядер других миров. (...) Вторая гипотеза заключалась в том, что ядра нет вообще. (...) В глубине металлического водородного океана "Юнона" обнаружила внутреннее ядро, состоящее, ну, из чего-то; вероятно, оно твердое, но исследователи не могут сказать наверняка. (...) Водород и вещество ядра, по-видимому, смешивается. (...) Юнона обнаружила, что в Юпитере в три-четыре раза больше тяжелых элементов, чем в нашей звезде. Проблема, однако, в том, что эти элементы, по-видимому, содержатся в верхних слоях атмосферы, а в самом внутреннем ядре их сравнительно немного. Все эти тяжелые вещества должны опускаться в ядро под действием силы тяжести. Но, по-видимому, этого не произошло. Если ядро такое легкое, то из чего же оно может быть сделано? (...) Другие потрясающие находки, сделанные с помощью "Юноны", касаются спутников Юпитера. (...) луна под названием Ио привлекла наибольшее внимание Юноны (...) С 1970-х годов ученые поняли, что вулканизм Ио обусловлен его эллиптической орбитой вокруг Юпитера. (...) Многие думали, что этот механизм, известный как приливный нагрев, был настолько мощным, что создал сплошной океан магмы под поверхностью, а не в небольших отдельных резервуарах магмы, которые питают земные вулканы. (...) Но когда "Юнона" дважды пролетала в опасной близости от Ио, приближаясь на расстояние 900 миль [1500 км] к бурлящей поверхности, она не обнаружила никаких следов мелководного океана магмы. (...) в типичном стиле "Юноны", наблюдения вызвали больше вопросов, чем ответов. (...) Если если будет одобрено дополнительное трехлетнее продление, "Юнона" сможет лучше рассмотреть призрачную кольцевую систему планеты и некоторые из ее менее известных внутренних спутников. Но никто не знает, как долго сможет продержаться стареющий космический корабль. (...) Всякий раз, когда аппарату придет конец, он будет охвачен пламенем, устремляясь по спирали к газовому гиганту, на изучение которого потратил всю свою жизнь".
  15. Меган Бартелс. «Множество лун Сатурна» (Meghan Bartels, The Many Moons of Saturn) (на англ.) том 333, №2 (сентябрь), 2025 г., стр. 87-88 в pdf - 1,72 Мб
    "Всего десять лет назад астрономы знали всего о 62 спутниках Сатурна. Сегодня эта окруженная кольцами планета может похвастаться ошеломляющими 274 официальными спутниками". - Интервью с Эдвардом Эштоном, научным сотрудником Института астрономии и астрофизики Академии Синика на Тайване, который помог обнаружить 192 из них: "[Вопрос Меган Бартелс] Как вы обнаружили эти спутники? [Ответ Эдварда Эштона] Чтобы обнаружить спутники, мы используем технику, известную как смещение и укладка. Мы делаем 44 последовательных снимка одного и того же участка неба в течение трехчасового периода, потому что в этот промежуток времени луны движутся относительно звезд со скоростью, аналогичной скорости Сатурна. Если мы просто сложим изображения обычным образом, то луна будет видна как полоса на изображениях, и это ослабит лунный сигнал. (...) Это на одну ночь. Но простое наблюдение объекта, движущегося со скоростью, подобной скорости Сатурна, вблизи Сатурна не гарантирует, что это луна. (...) Итак, все, что нам нужно сделать, это отследить объекты, чтобы показать, что они находятся на орбите вокруг планеты. Для этого мы повторяем процесс "сдвига и накопления" несколько раз в течение многих месяцев и лет. [Вопрос] Почему это открытие произошло именно сейчас? Понадобились ли вам новые методы и обсерватории для выполнения этой работы? [ответ] Методика и технологии существуют уже давно - та же методика использовалась для поиска спутников Нептуна и Урана. (...) Одна из причин, по которой этого не было сделано для Сатурна, заключается в том, что это отнимает очень много времени. (...) [Вопрос] Мне было интересно, работает ли этот метод на других планетах, и, очевидно, ответ - да. Как вы думаете, есть ли другие спутники, которые еще предстоит обнаружить с помощью этого метода, вокруг Сатурна или других планет? [Ответ] Мы действительно нашли кандидатов в спутники вокруг Сатурна, но не смогли отследить их достаточно долго, чтобы подтвердить. (...) На данный момент, если вы воспользуетесь тем же методом для Юпитера, вы сможете найти более тусклые спутники. Проблема в том, что площадь неба, которую могут занимать спутники Юпитера, значительно больше, чем площадь неба, которую могут занимать спутники Сатурна, поэтому для Юпитера этот метод требует еще больше времени. (...) [Вопрос] Что мы знаем об этих новых лунах? [ответ] В принципе, вы можете получить только орбиты лун и приблизительные размеры. Но если вы посмотрите на распределение орбит, вы сможете немного больше узнать об истории системы. (...) [Вопрос] Сможете ли вы назвать их все? Обязательно ли вам называть их все? [Ответ] Думаю, мне это не нужно. Некоторые из этих новых спутников были обнаружены другой группой исследователей более 10 лет назад. Это, возможно, 20-30 из них. Что касается остальных, то мы полностью признаем их открытие, что, я думаю, означает, что мы имеем право называть их по-своему. Но пока они не могут быть названы; сначала им просто присваивается номер, когда находят их высокоточную орбиту, и я не уверен, сколько времени это займет".
    назад 2024 г.