Огонек №18 1946 год


1. Схема давления в закрытой камере.

РЕАКТИВНЫЕ ДВИГАТЕЛИ
И САМОЛЕТЫ


Б. РАБИНОВИЧ и Р. ВИНОГРАДОВ

В начале 1944 года, когда под ударами Красной Армии дрогнули и покатились назад немецкие полчища, геббельсовская печать и радио на все лады закричали о «новом секретном оружии», которое поставит «мир на колени».

На мирные кварталы Лондона обрушились немецкие реактивные самолеты-снаряды. Но это «оружие возмездия», как хвастливо окрестили его фашистские писаки, не помогло. Немцы продолжали нести поражения на фронтах.

Снова закрутилась в свистопляске гитлеровская пропаганда, устрашая мир «совершенно новым сверхсекретным оружием».

Судьбу «сверхсекретного» постигла та же участь, что и «секретного». Ни реактивные истребители «мотыльки смерти», ни новые ракеты «Фау-2» не спасли Германию от разгрома.

***

Реактивные аппараты имеют большую историю. Ракета как летательный аппарат была известна ещё в глубокой древности. В летописях сказано, что в середине XIII века китайцы и арабы для устрашения противника пользовались пороховыми ракетами. У ракет была причудливая внешняя оболочка, и назывались они поэтому летающими драконами. В XVIII столетии ракетное оружие получило широкое распространение в Индии, а оттуда было завезено полковником Конгрэвом в Англию. Конгрэв усовершенствовал ракеты настолько, что они могли конкурировать с артиллерией того времени. В 1807 году ему удалось с помощью нескольких тысяч ракет, выпущенных кораблями с моря, поджечь город Копенгаген.

После этого ракетные снаряды были приняты на вооружение большинством европейских стран. В XIX веке, после изобретения нарезных стволов, начала бурно развиваться артиллерия. О ракетных снарядах почти забыли.

В начале XX века гениальный русский учёный и изобретатель К. Э. Циолковский впервые разработал теорию полёта ракеты и дал несколько схем ракетного корабля. В своей работе «Исследование мирового пространства реактивными приборами», изданной в 1903 году, он собрал отдельные отрывочные факты в стройную систему и положил этим начало новой науке. Учёные и инженеры начали заниматься теорией и практикой ракетного полёта. Однако во время первой мировой войны ракетные снаряды почти не нашли применения.

В двадцатых годах нашего столетия был сконструирован планёр с двигателем, состоящим из пороховых ракет. Но и он не представлял практической ценности, так как ракеты требовали очень много пороху, а двигатель действовал всего несколько секунд.

Лишь во время второй мировой войны наряду с массовым применением ракетной артиллерии были впервые выпущены самолёты с реактивными двигателями.

В чём сущность действия такого двигателя?

Рассмотрев чертёж 1, мы увидим, что в закрытой камере (А) давление распространяется во все стороны одинаково. Если в задней части камеры сделать отверстие (В), давление на переднюю стенку ничем не будет уравновешиваться. Оно и создаст реактивную тягу (Р).

В настоящее время имеются два вида реактивных двигателей: жидкостные и воздушные. Различие их состоит в том, что жидкостные работают независимо от окружающей среды на жидком окислителе, тогда как воздушные нуждаются в кислороде воздуха.

Жидкостный реактивный двигатель состоит: из камеры сгорания с соплом, баков для горючего и окислителя, реакционной камеры, устройств для подачи топлива и системы зажигания для пуска двигателя. В качестве окислителя чаще всего используется перекись водорода, которая разлагается в реакционной камере на кислород и воду. Выделяющееся при этом тепло используют для превращения воды в пар. Полученный пар направляется в турбину, вращающую насос для подачи топлива.

Жидкостные реактивные двигатели имеют свои достоинства и недостатки. К недостаткам относится то, что очень трудно подобрать материал для камеры сгорания, который не плавится при температуре в 2,5 тысячи градусов. Кроме того двигатели могут работать непрерывно только 5 — 10 минут, они недолговечны и требуют большого количества горючего.

Крупное достоинство их — полная независимость от окружающей среды. Можно бесспорно утверждать, что это двигатель будущего, ибо только он может позволить человеку осуществить полёт в мировом безвоздушном пространстве.

Другим достоинством является возможность получить очень большую тягу при небольших сравнительно размерах двигателя.

Жидкостный реактивный двигатель был использован немцами при постройке истребителей-перехватчиков, которые могут набирать высоту со скоростью почти в 5 раз большей, чем обычные истребители. Примером таких истребителей является немецкий «Ме-163».

По тому же принципу была построена немецкая ракета «Фау-2», двигатель которой работал всего одну минуту, сообщая ей скорость около 5 тысяч км в час.

Воздушные двигатели бывают трёх типов: прямоточные, пульсирующие и турбокомпрессорные.

Прямоточный двигатель имеет большой недостаток. Он начинает действовать только после того, как ему сообщат определённую скорость. Применения он пока не нашёл.

Пульсирующий двигатель (чертеж 2) состоит из камеры сгорания, сопла в форме длинной трубы, клапанной решётки, систем зажигания и подачи горючего. Зажигание нужно только при запуске, потому что в дальнейшем камера сгорания нагревается настолько, что смесь самовоспламеняется.

В первый момент клапаны закрыты, и после воспламенения смеси волна сжатия пробегает по трубе и, отражаясь от открытого конца, возвращается ввиде волны разряжения. Под влиянием разряжения клапаны открываются и в камеру сгорания попадает определённое количество воздуха. Вновь впрыскивается автоматом горючее, и происходит новая вспышка. Давление в камере сгорания резко возрастает, и клапаны закрываются. Процесс повторяется периодически с частотой примерно 50 циклов в секунду.

Немецкий «Фау-1» и представлял собой небольшой самолёт простейшей конструкции с пульсирующим воздушно-реактивным двигателем. Он переносил одну тонну взрывчатого вещества на расстояние 250 - 300 километров. Управление было автоматическое. Но попадания «Фау-1» были неточные; немцы применяли их для варварской «площадной» бомбардировки английских городов.

Турбокомпрессорный воздушно-реактивный двигатель (чертёж 3) состоит из компрессора (1), турбины (2), камеры сгорания (3), входного патрубка (4), регулирующего конуса (5) и сопла (6).

Основными частями являются компрессор и турбина. При действии их создаётся повышенное давление и согревание воздуха перед попаданием его в камеру сгорания. Первоначальное движение турбина получает от небольшого бензомотора. Турбина вращает сидящий с ней на одной оси компрессор, а он сжимает воздух, поступающий из входного патрубка.


2. Пульсирующий двигатель.



3. Турбокомпрессорный воздушно-реактивный двигатель.

Нагретый при сжатии воздух поступает в камеры, куда впрыскивается горючее. Сгорание происходит при постоянном давлении, и все продукты сгорания направляются на лопатки турбины. Далее газы выходят через сопло, создавая реактивную тягу. Скорость истечения газов регулируется подвижным конусом.

Несмотря на то что турбокомпрессорный двигатель тяжелее по весу и сложнее по конструкции, он все же нашел более широкое применение благодаря большой экономичности. Коэфициент полезного действия ((КПД) его при скоростях, близких к 1000 километрам в час, достигает 10-13 процентов, т. е. приближается к КПД обычной винтомоторной группы.

Турбокомпрессорный двигатель может работать на дешёвом топливе, имеющем низкую температуру воспламеняемости. Но при малых скоростях у него ничтожный КПД и большая длина пробега при взлёте.

Отличия конструкции самолётов с реактивными двигателями незначительны. Хвостовое оперение располагается более высоко, чтобы струи выходящих газов не касались его. Двигатель размещается под крыльями по обеим сторонам фюзеляжа или в самом фюзеляже.

Воздушно-реактивный двигатель открыл широчайшие перспективы повышения скорости полета. В прошлом году английский реактивный истребитель «Глостер-Метеор» установил мировой рекорд скорости — 970 километров в час. Недавно американский самолёт с воздушным реактивным двигателем «Шутинг Стар» пролетел без посадки 3882 километра за 3 часа 42 минуты.

Реактивный двигатель найдёт себе в будущем применение на всех самолётах, совершающих дальние перелёты с большими скоростями, будь то транспортные, пассажирские или военные. Он открывает новые широчайшие возможности для самолетостроения и прокладывает путь к стратопланам с жидкостно-реактивными двигателями, со скоростью полета в несколько тысяч километров в час на высоте 30-40 километров. Создание таких машин - вопрос недалекого будущего.