"Техника-молодежи" 1983 г №4 с.2-7



РОЖДЕНИЕ КОСМИЧЕСКОГО РАСТЕНИЕВОДСТВА

АЛЕКСАНДР МАШИНСКИЙ, ГАЛИНА НЕЧИТАЙЛО, кандидаты биологических наук

В

начале декабря прошлого года мы, двое специалистов по биологическим экспериментам в космосе, готовились вылететь в Джезказган вместе с сотрудниками поисково-спасательной службы.

Нам предстояло встретить космонавтов Анатолия Березового и Валентина Лебедева, проработавших на космической орбите рекордное время: 211 суток.

После волнений, связанных с многократным откладыванием вылета из-за капризов московской погоды, уже в полете, нас начинают мучить сомнения. Успеем ли, будет ли работать наша группа встречи? Это зависит от того, с какого из нескольких возможных посадочных витков начнет спуск космический корабль. Если руководство полета по какой-либо причине задержит спуск, тогда придется действовать одной из дублирующих групп. Но хочется, очень хочется поработать самим.

К биологическим экспериментам практически у всех экипажей очень заинтересованное отношение. Это заметно и на занятиях в Центре подготовки, и на космодроме Байконур при снаряжении космических аппаратов перед стартом, и во время полета. В Центре управления полетом стали привычными разговоры экипажа с биологом, когда обсуждается ход того или иного эксперимента, уточняются методики, когда рассказываем друг другу о результатах: космонавты о том, что происходит на орбитальной станции, а мы — как идет контроль в лаборатории.

Бортовая витражная оранжерея «Малахит-2» обеспечивает оптимальные условия развития даже экзотическим орхидеям.













В. Лебедев работает с «подсобным хозяйством» на борту станции «Салют-7».

В пеналах космонавты выращивали кинзу, огуречную траву, огурцы, редис... Сюда же они поместили доставленные космическим грузовиком листья, чтобы дольше сохранить свежесть этого привета Земли.

В гостинице находим свою группу. Ее руководитель очень озабочен. Посадка предстоит особенная, ночная. Такое бывает редко. А тут еще скверная погода... Буквально за 10 мин до вылета к месту посадки вдруг опустился туман. Вертолеты один за другим пошли к расчетной точке. И хотя в работу включилась именно наша группа, встретиться с космонавтами на месте приземления нам помешал... недавно выпавший мягкий снег. От винтов поднялся такой снежный вихрь, что понять, где же эта самая земля, оказалось невозможным. Пришлось уйти на запасной аэродром и положиться на знающих специалистов поисково-спасательной группы. Раз уж они могут обеспечить нормальные условия космонавтам, то сделают это и для биологических объектов. И действительно, на следующий день мы получили свой материал в прекрасном состоянии.

ЭТО НАЧИНАЛОСЬ ТАК

Еще К. Э. Циолковский показал необходимость использования высших растений в качестве средства, призванного обеспечить дыхание и питание людей в длительных внеземных полетах. В трудах гениального ученого мы находим первые «технические условия» на создание космических оранжерей и жилых орбитальных сооружений с замкнутым экологическим циклом. А Ф. А. Цандер еще в 1915—1917 годах в своей московской квартире начал ставить эксперименты по созданию, как он говорил, оранжереи авиационной легкости.

То, о чем мечтали теоретики космонавтики, стало претворяться в жизнь под руководством С. П. Королева. Эксперименты по воздействию факторов космического полета на растительные объекты начались в 1960 году на втором космическом корабле-спутнике. Тогда совершили свой полет и впервые успешно возвратились на Землю традесканция, хлорелла, семена различных сортов лука, гороха, пшеницы, кукурузы. Культуры хлореллы летали в космос и на пилотируемом космическом корабле «Восток-5». После этого растительные организмы путешествовали в космос на всех наших космических кораблях, орбитальных станциях и биоспутниках серии «Космос».



Биолог А. Машинский у люка космического корабля перед извлечением из него биологических объектов, доставленных с орбитальной станции на Землю.


В 1962 году Главный конструктор наметил целую программу ботанических и агротехнических исследований в космосе. Он писал: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями». Каков состав этих посевов, какие культуры? Их эффективность, полезность? Обратимость (повторяемость) посевов из своих же семян из расчета длительного существования ОР? Что можно иметь на борту станции или в ОР из декоративных растений, требующих минимума затрат и ухода? Какие организации будут вести эти работы: по линии растениеводства (и вопросов почвы, влаги и т. д.), по линии механизации и «светотеплосолнечной» техники и систем ее регулирования для ОР и т. д.?» (Среди других записей Королева этот фрагмент был опубликован в «ТМ», № 4 за 1981 год, с. 30—31.)

Вскоре по инициативе Главного конструктора в Красноярске появился экспериментальный замкнутый биотехнический комплекс «Биос». Длительное время испытатели обеспечивались в нем кислородом, растительной пищей и водой за счет систем жизнеобеспечения с участием высших растений и микроводорослей.

ЛЮДИ В ИСКУССТВЕННОЙ СРЕДЕ

Комплекс «Биос» состоял из четырех герметических отсеков, в одном из которых размещался экипаж, в двух других — фитотроны, в четвертом — культиваторы с водорослями. Весь комплекс был заключен в стальной герметичный корпус в форме прямоугольного параллелепипеда с длиной 15 и высотой 2,5 м. Его объем составил 315 м3.

В отсеке экипажа было три каюты, кухня-столовая, душ, совмещенный с туалетом, лабораторное помещение с мастерской и местом для отдыха.

В каждом фитотроне располагались металлические поддоны общей площадью 17 м2 для выращивания пшеницы, овощная плантация площадью 3,5 м2, в которой выращивались на керамзите свекла, морковь, укроп, репа, листовая капуста, белый редис, лук-батун, огурцы и щавель. Три хлорельных культиватора занимали 30 м2.

Теоретически не вызывало сомнений: человек может нормально жить в такой искусственной среде. Однако системы, обеспечивающие его жизнедеятельность, предстояло проверить в ходе наземного эксперимента, а уж затем создавать их для космических аппаратов.

«Биос» стал ареной нескольких успешных опытов с людьми. Самый длительный протекал 180 суток. Причем удалось добиться замыкания биотехнической системы по атмосфере и воде на 82—95%. Стремясь увеличить этот процент, исследователи столкнулись с довольно интересной проблемой.

Сообщество организмов, если оно превосходит по количеству особей некий минимум, представляет собой самовосстанавливающуюся систему. Говоря техническим языком, живые организмы, входящие в биотехническую систему, не только ремонтопригодны, но и ремонто-способны. А вот технические узлы, выработав свой ресурс, самовосстанавливаться не могут — их надо ремонтировать. Для полной гармонии техника должна подняться на новый уровень, когда появятся самовосстанавливающиеся машины.



А. Березовой и В. Лебедев на занятиях по работе с биологическим оборудованием в Центре подготовки космонавтов.

Взошедшие в невесомости в установке «Оазис» проростки пшеницы и гороха.

Установка «Электропотенциал» для экспериментов по электростимуляции растений.

ЧТО ТАКОЕ ГЕОТРОПИЗМ?

Человек из-за исключительной сложности и совершенства своего организма очень быстро и неоднозначно адаптируется к новым условиям. Выявить его специфические реакции на тот или иной действующий фактор очень трудно. Тем более что с людьми в космосе мы пока еще не имеем возможности ставить параллельно достаточно большое число опытов, отличающихся каким-то одним фактором. Для этого нужны гораздо более простые модели. Вот тут-то и приходят на помощь растения, работать с которыми подчас гораздо удобнее, чем, например, с мелкими лабораторными животными.

В процессе эволюции многие живые организмы выработали механизмы, ответственные за восприятие силы тяжести. Свойства растений реагировать на ее воздействие называют геотропизмом.

Еще Чарлз Дарвин связывал изгибы у растений, возникающие под действием силы тяжести, с наличием веществ, перемещающихся в зоны роста. Позже Д. Сакс сформулировал концепцию геотропической реакции, проявляющейся в виде последовательно протекающих процессов. А затем в этих исследованиях наметились два направления. Первое связано с именами Немеца и Габерландта, которые создали так называемую статолитовую теорию. Согласно ей геотропическая реакция возникает благодаря давлению подвижных зерен амилопластов-статолитов на протоплазму. Другая гипотеза, выдвинутая Холодным, исходила из различия физико-химических свойств протоплазмы корня и стебля, в результате чего происходит электрическая поляризация клеток. Вент дополнил ее предположением о том, что ростовые движения основаны на полярном перемещении особых веществ — ауксинов.

Первые эксперименты для изучения геотропической реакции ученые вели на центрифугах, приводимых в движение мельничным колесом. Так удавалось достичь ускорения 3,5 g. При ускорении 1 g корни и стебли фасоли изгибались точно по направлению вектора равнодействующей гравитационной и центробежной сил. Это прямо доказывало, что именно сила тяжести определяет направление роста. Но только практическая космонавтика дала возможность это проверить.

НАДЕЖДЫ И РАЗОЧАРОВАНИЯ

В 1971 году на корабле «Союз-10» за пределы Земли отправилась установка «Вазон» с двумя тюльпанами. Но, к сожалению, стыковки со станцией «Салют» не произошло, распустившиеся цветы могли наблюдать уже на Земле лишь специалисты группы поиска.

На орбитальной станции «Салют-4» стоял довольно совершенный «Оазис», снабженный телеметрической и кинорегистрирующей системами. Исследования велись с горохом.

— Поначалу многое не ладилось, — рассказывает космонавт Георгий Гречко. — Вода не поступала туда, куда было нужно, затем стали срываться огромные капли, и за ними пришлось гоняться с салфетками. Но в целом эксперимент удался, были получены взрослые, двадцатитрехдневные растения. Правда, цветов не было, но фильм с замедленной съемкой динамики роста растений снять удалось.

Именно Гречко одним из первых свидетельствовал о психологической поддержке, которую космонавты получали у растений. Сам он, особенно к концу полета, старался при каждом удобном поводе подплыть к оранжерее, чтобы лишний раз бросить взгляд на зеленых друзей. Иногда он ловил себя на том, что делает это неосознанно.

Проведенный на Земле анализ показал, что, несмотря на внешнее сходство с контрольными, растения отличались по структуре клеток, биохимическому составу, ростовым характеристикам. Это, казалось, подтверждало скепсис тех ученых, которые и до того уже сомневались в возможности нормального роста растений в условиях невесомости. Дальнейшие эксперименты по культивированию растений в длительных космических экспедициях тоже не принесли ничего утешительного. У пшеницы и гороха никак не удавалось получить не только семян, но даже цветов. На стадий их образования растения просто погибали. И этот факт давал основание говорить о принципиальной невозможности роста и развития растений в условиях космического полета. Тогда-то к решению проблемы и подключились опытные научные коллективы, возглавляемые академиком Н. П. Дубининым, академиком АН Литовской ССР А. И. Меркисом и академиком АН Украинской ССР К. М. Ситником.

Прежде всего решили выяснить, влияет ли тут именно невесомость или же другие факторы, например, технология культивирования. Ведь сама эта технология для столь необычных условий еще только создавалась. А на нее-то невесомость оказывала явное влияние. Ведь при отсутствии гравитации водо— и газообмен у растений происходит по-иному, возникает проблема отвода метаболитов и обеспечения нужного теплового режима, поскольку естественная конвекция тоже отсутствует. Вновь попытались вернуться к культивации растений, в лукавицах которых сосредоточен почти полный запас необходимых для развития веществ.

Летом и осенью 1978 года во время полета космонавты В, Коваленок и А. Иванченков выращивали лук двумя способами: научным и, «как в деревне Белой», откуда был родом командир корабля. Когда космонавты возвратились на станцию после выхода в открытый космос, то осторожно намекнули: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть». Но собирать урожай тогда еще было рано.

— Лук растет в двух сосудах, один по вашей методике, а другой по моей, крестьянской, — докладывал В. Коваленок. — Если его сверху не обрезать, то он начинает гнить, а если подрезать, растет хорошо, не гниет.

— Ну что ж, хорошо. Если есть желание, несколько стрелок теперь можете съесть.

— Это мы уже сделали, из четырнадцати съели шесть.

А в репортаже по телевидению командир шутил: «Сельхозтехника лучше работает, это мы проверили в результате соцсоревнования. Наш лучок-то растет быстрее, чем научный!» Но увы, ни по той, ни по другой методике строптивое растение до цветения довести так и не удалось.

На следующий год в Главном ботаническом саду АН СССР в установке под названием «Лютик» подготовили для выгонки на борту станции «Салют-6» тюльпаны. Им оставалось только распуститься в космосе, но этого-то они и «не захотели» сделать. Почему — понять до сих пор не удалось. Аналогичная установка почти в то же время побывала на Северном полюсе. И когда там появилась лыжная экспедиция под руководством И. Шпаро, тюльпаны порадовали отважных путешественников ярким пламенем своих цветов.

ОПЕРАЦИЯ «ОРХИДЕЯ»

И все же добиться в космосе цветения растений было весьма заманчиво. В работу включились специалисты Центрального республиканского ботанического сада АН УССР. Свой выбор они остановили на эпифитных тропических орхидеях, многие из которых исключительно декоративны. Ботаники полагали, что эпифигный, то есть неназемный, образ жизни орхидей должен ослабить геотропическую реакцию. Ведь закрепление их корней в расщелинах коры, дуплах, развилках ветвей обусловлено прежде всего присутствием питательных веществ и воды. Корни орхидей способны расти в боковых направлениях и даже вверх в поисках подходящего субстрата.

Эти растения обладают рекордной длительностью цветения — до шести месяцев. С учетом этих положений и было отобрано восемь видов орхидей.

На этот раз, казалось, все было предусмотрено. Сконструировали, изготовили и испытали систему «Малахит-2» — фитокассету с двумя светильниками и четырьмя пеналами для растений. Пеналы заправили искусственной ионообменной почвой, которая в свое время была разработана для опытов в комплексе «Биос», а затем использовалась в установках «Оазис» и «Вазон».

И космонавты В. Рюмин и Л. Попов уже работают с «Малахитом» на борту орбитальной станции «Салют-6». Часть орхидей послали туда уже расцветшими. Цветы опали почти сразу же, но сами растения дали прирост, у них образовались не только новые листья, но и воздушные корни. Даже без цветов они радовали космонавтов своей зеленью. Одно сознание того, что рядом с ними растения растут так же, как и на Земле, радовало космонавтов, о чем они не раз сообщали в своих репортажах с орбиты.

30 июля 1980 года В. Рюмин в телерепортаже сказал: «У нас есть система с растениями «Малахит». Так вот к прилету нашего друга Фам Туана из Вьетнама в ней даже цветок вырос». И он показал этот цветок.


Летчик-космонавт СССР С. Савицкая и биолог Г. Нечитайло обсуждают результаты опытов с растениями на орбите.

Страница из бортжурнала станции «Салют-7» с зарисовками С. Савицкой.

Что тут началось! Тут же сообщили в Киев, там определили название этого вида и с нетерпением стали ждать цветок на Земле. И получили. В одном из пеналов среди листьев виднелся красивый бледно-розовый цветок... Он был... искусно сделан космонавтами из бумаги.

Операция «Орхидея» многому нас научила. Хотя экзотические растения в космосе не зацвели, в отличие от своих наземных дублеров, почти непрерывно покрытых в течение всего эксперимента в контрольном «Малахите» яркими цветами, они продержались на «Салюте-6» почти полгода. Но стоило им вернуться в оранжерею своего ботанического сада в Киеве, как они сразу же вновь покрылись цветами.

А розыгрыш космонавтов, с одной стороны, еще раз показал нам, насколько велико их желание видеть на борту станции цветущие и, значит, полностью удовлетворенные созданными условиями растения, а с другой — липший раз предостерег от того, чтобы принимать желаемое и даже видимое за реально достигнутое.

Но почему же растения так и не цветут? Чтобы ответить на этот вопрос, во время последних экспедиций на «Салюте-6» и на новой станции «Салют-7» было проведено много экспериментов с целым набором оригинальных устройств для культивирования растений.

ПОИСКИ ПРИВОДЯТ К УСПЕХУ

Нужно было помочь растениям справиться с невесомостью. Прежде всего в «Оазисе» попытались применить стимуляцию электрическим полем. При этом исходили из предположения, что геотропическая реакция связана с биоэлектрической полярностью тканей, вызванной электромагнитным полем Земли.

В космических экспериментах это предположение подтвердилось лишь частично.

Исследования велись и в других направлениях. Например, проростки некоторых растений выращивались на небольшой центрифуге «Биогравистат». Она создавала на борту корабля постоянное ускорение до 1 g. Оказалось, что в физиологическом смысле центробежные силы адекватны силе тяжести. В центрифуге проростки отчетливо ориентировались вдоль вектора центробежной силы. В стационарном блоке, напротив, наблюдалась полная дезориентация всходов.

Малая орбитальная оранжерея «Фитон» на борту станции «Салют-7». Здесь впервые арабидопсис прошел полный цикл развития и дал семена.

Малая орбитальная оранжерея «Светоблок». В ней на борту станции «Салют-6» арабидопсис впервые зацвел.

Бортовая оранжерея «Оазис-1А» станции «Салют-7». Конструкторы и ботаники предусмотрели систему дозированного полуавтоматического полива, аэрации и электростимулирования корневой зоны, смены и перемещения вегетационных сосудов с растениями относительно источника автономного освещения.

Бортовая установка «Биогравистат» с вращающимися и неподвижными дисками для экспериментов по проращиванию семян в условиях искусственной силы тяжести.

Оранжерея «Малахит» на борту станции «Салют-6» после трехмесячного пребывания на орбите.

Фотографии космонавтов и Владимира Орешкина.


А в устройстве «Магнитогравистат» изучалось ориентирующее действие другого фактора — неоднородного магнитного поля. Его влияние на проростки креписа, льна, сосны тоже компенсировало отсутствие гравитационного поля.

Словом, упорству исследователей можно было позавидовать.

Наконец, пришел успех. И выпал он на долю маленького, невзрачного растения арабидопсиса. Имея цикл развития всего около 30 дней, оно прекрасно растет на искусственных почвах. Во время последней экспедиции на «Салюте-6» арабидопсисы зацвели в камере установки «Светоблок».

На станции «Салют-7», где работали А. Березовой и В. Лебедев, эксперимент по культивированию арабидопсиса подготовили особенно тщательно. Там была герметичная камера «Фитон-3» с пятью кюветами и своим источником света. В кюветах — субстрат из агара, содержащий до 98% воды. По мере роста растений они могли отодвигаться от источника света. Семена с помощью сеялки-пушки посеяли сами космонавты. Вначале растения росли медленно. Но вот 2 августа 1982 года В. Лебедев сообщил:

— Появилось много, много бутонов и первые цветы.

А 19 августа с орбиты поинтересовались :

— Могут быть у арабидопсиса стручки?

— Конечно.

— А какого они цвета?

— Сперва зеленые, а потом темнеют до светло-коричневого.

— Значит, вас и нас можно поздравить с успехом. Семь зрелых стручков и много созревающих. Настоящая удача!

Прибывшей на станцию Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. Она тщательно зарисовала его. На рисунке семь цветущих растений высотой до 10 см, на них 27 стручков. При подсчете на Земле в стручках обнаружили 200 семян.

Этот опыт опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития — от семени до семени.

Правда, арабидопсис — самоопылитель, оплодотворение у него происходит еще до раскрытия бутона. Но все же успех огромен. И это успех не только научного коллектива Института ботаники АН Литовской ССР, возглавляемого академиком А. И. Меркисом, но также космонавтов Анатолия Березового и Валентина Лебедева. Теперь можно говорить, что космическое растениеводство родилось практически, и оценивать его перспективы.

К ВНЕЗЕМНЫМ ОРАНЖЕРЕЯМ БУДУЩЕГО

— Давайте пофантазируем, — предложили мы вернувшемуся из 211-суточного полета Валентину Лебедеву. — Нужна ли в длительном полете оранжерея?

— Без сомнения, нужна. Ухаживая за растениями, ремонтируя и кое в чем совершенствуя ваши ботанические установки, мы поняли, что без растений длительные космические экспедиции невозможны. Перед возвращением на Землю растения просто жалко было вырывать. Вынимали мы их очень осторожно, чтобы не повредить ни одного корешка.

Наконец-то у нас было достаточно времени, чтобы обсудить не только результаты выполненных и программы новых экспериментов, не и самые разные проекты космических оранжерей будущего.

— Такие оранжереи, — считает космонавт, — займут целые отсеки внеземных станций. Ведь растениям нужна иная атмосфера, нежели людям, — с повышенным содержанием углекислоты и водяных паров. Наверное, другой должна быть и оптимальная для получения наибольшего урожая температура, а также продолжительность светового дня. А главное — им нужен настоящий солнечный свет.

Делать очень большие иллюминаторы или же целые стеклянные стены пока технически невозможно. Видимо, наряду с некоторым увеличением размеров иллюминаторов следует применить зеркальные концентраторы. Собранный ими и направленный внутрь отсека световой поток можно будет через систему световодов подводить к растениям подобно тому, как к ним подводится влага с питательными веществами. Вот тогда и исполнится предсказание Циолковского о том, что при подборе самых урожайных культур и оптимальных условий для их развития каждый квадратный метр внеземной плантации сможет полностью прокормить одного жителя космического поселения.

Все мы уверены, что так и будет!