«Вокруг света» 2006 г, №10
Современные ракеты на химическом топливе отлично справляются с задачей вывода на орбиту космонавтов и геостационарных телекоммуникационных спутников. Однако для полетов к далеким планетам они не слишком хороши — тут важна не высокая мощность, пусть и на краткое время, а долгая, стабильная работа и небольшая масса двигателя. Струя раскаленных газов из обычной химической ракеты течет «медленно». А вот в ионных двигателях, например, скорость выбрасываемого потока атомов может быть выше на порядок, и, значит, топлива потребуется на порядок меньше. Об этом писал еще Циолковский, но только теперь мы приближаемся к решению задачи. |
Ракета Atlas 5 установила рекорд скорости при старте с Земли |
В 1970-х годах американские зонды Voyager 1 и Voyager 2, пролетавшие в окрестностях Юпитера, обнаружили ледяной покров на его естественных спутниках Каллисто, Ганимеде и Европе. В 1995 году на орбиту вокруг Юпитера была выведена автоматическая станция Galileo, которая зафиксировала признаки воды под ледяным покровом Европы. Ученые предположили, что в этой воде вполне могла зародиться жизнь, пусть и в самых примитивных формах. Именно в связи с этим стали разрабатываться проекты детального исследования ледяных лун Юпитера, в первую очередь Европы. Космические автоматы, которые побывали в этом районе Солнечной системы, можно пересчитать по пальцам. Даже самый крупный и сложный из них, Cassini, для исследования ледяного панциря Европы и жидкого океана под ним не пригоден. Для этого необходим переход на качественно новый уровень: станция должна быть сложнее и, соответственно, многократно тяжелее всех запущенных до сего дня зондов. Предполагается, что такая станция выйдет на орбиту спутника малой планеты и будет изучать ее с помощью мощного радиолокатора. По прогнозам, толщина ледяного покрова Европы составляет порядка 70-80 км. Таким образом, мощность излучения радара, который сможет «достать» до подледной воды, должна составлять несколько десятков киловатт, а масса научной аппаратуры, обеспечивающей его работу, — порядка тонны! Немаленьким должен быть и передатчик, который обеспечит непрерывную доставку научной информации на Землю. Для сравнения напомним, что масса приборов станции Galileo составляла всего 118 кг, а максимальная мощность системы энергоснабжения на основе радиоизотопных термоэлектрических генераторов во время полета около Юпитера не превышала 0,5 кВт. |
Активные исследования в области электроракетных двигателей были начаты в СССР еще в первой половине 1960-х годов. Основной задачей для мощных «электрических ракет» в то время была пилотируемая экспедиция на Марс. Расчетные значения потребной удельной мощности (на уровне 10 МВт) и высокой удельной тяги почти однозначно определяли выбор типа двигателя — блок из 10-20 магнитоплазмодинамических (МПД) ускорителей. Исследовательский Центр имени М.В. Келдыша (в то время НИИ тепловых процессов), как головной институт космической отрасли, провел обширные теоретические и экспериментальные исследования МПД-двигателей. В первые 10 лет изучались различные рабочие тела, всевозможные конструктивные схемы, разрабатывались методы диагностики, была создана уникальная стендовая база. Позднее, в 1970-1980-х годах, было проведено более 20 летных испытаний МПД-ускорителей, созданных в Центре Келдыша. Также в нашей стране интенсивные исследования МПД-двигателей велись в НПО «Энергия», ЦНИИмаш, ОКБ «Факел», МАИ, МИРЭА и МГТУ. Интерес к разработке ракетных МПД в 1970-е годы заметно снизился, что было вызвано в первую очередь трудностями генерации требуемой мощности в космосе. Так что сейчас работы по большим МПД продолжаются только в МАИ. Стоит заметить, что наряду с такими очевидными достоинствами данного типа двигателей, как высокие электрическая мощность и удельная тяга, у них имеется и один крупный недостаток — малый ресурс работы. В более выгодном положении оказались так называемые «стационарные плазменные двигатели» (СПД). Установки на их базе уже давно и успешно применяются на отечественных спутниках (первое испытание прошло в 1972 году на борту аппарата «Метеор»). Штатная эксплуатация серийных СПД была начата в 1982 году со спутника «Поток», где они использовались для коррекции геостационарной орбиты по долготе (в направлении «восток-запад»). Позже СПД устанавливались на спутниках связи «Луч», «Луч-2», «Купон», «Ямал-100», «Ямал-200». С 1994 года в составе геостационарных аппаратов «Галс», «Экспресс», «Экспресс-А», Sesat и «Экспресс-АМ» в космосе эксплуатируются довольно мощные СПД, которые корректируют орбиту как по долготе, так и по наклонению (в направлении «север-юг»). Надо отметить, что все они получают питание от солнечных батарей. В настоящее время ведущие космические державы активно используют российские электроракетные двигатели на своих аппаратах. Уже в 2002 году предпринимались попытки вывести на геостационарную орбиту спутники Stentor и Astra 1K с нашими СПД, но оба аппарата были потеряны из-за аварий ракетносителей. В 2003 году Европейское космическое агентство запустило к Луне научный аппарат SMART 1, оснащенный двигателем PPS-1350, который стал результатом совместной деятельности российского ОКБ «Факел» и французской компании Snecma. С этого момента зарубежные спутники с российскими электроракетными двигателями на борту стали запускаться регулярно. В 2004 году в космос ушли сразу несколько подобных аппаратов. Так, в июне на «геостационар» выведены Intelsat 10-02 и Telstar 18, в августе — Amazonas, а в феврале 2005 года запущен АМС-12/ WorldSat 2. Не отстают и отечественные спутникостроители, которые оснащают мощными СПД спутники серии «ЭкспрессАМ», «Монитор-М» и другие. Разработчиком двигателей, установленных на борту указанных выше аппаратов, является ОКБ «Факел». В настоящее время активные работы по электроракетным двигателям также проводятся еще в двух организациях — в Центре Келдыша и ЦНИИмаш. |
Формула Циолковского Затраты топлива на разгон тонны груза до заданной скорости при скорости истечения газов 3 км/с |
Космический тянитолкай Птица в полете опирается на воздух, спортсмен-прыгун отталкивается от земли, а у корабля в безвоздушном пространстве нет точки опоры. Поэтому остается только один способ ускорения — выброс части собственной массы с максимальной скоростью в сторону, противоположную той, куда надо двигаться. Но если скорость истечения топлива мала, то большая часть энергии уходит на то, чтобы разгонять вместе с ракетой запасы рабочего тела. В результате КПД ракетной установки резко падает, когда конечная скорость становится заметно больше скорости истечения. Чисто теоретически обычные химические двигатели могут разогнать космический аппарат до скорости, близкой к световой, только топлива для этого понадобится больше, чем все разведанные запасы нефти и газа. |
Американский проект JIMO. «Крылья», отходящие от осевой фермы, — это не солнечные батареи, а радиаторы для сброса в космос «отработанной» тепловой энергии |